Nota la velocità di cambiamento F' di una funzione F, la variazione di F nell'intervallo da A a B è l'integrale di F' su [A,B]:

F(B) − F(A) = [a,b] F'

Ad esempio nel caso di un auto che si muove con velocità v(t) la distanza percorsa dall'auto nell'intervallo [0,T] è [0,T] v(t) dt.

Situazioni di questo genere si incontrano spesso in economia, dove le velocità di varazione vengono spesso chiamate marginali.

Un fornitore di computer ha un guadagno marginale di  15−5·exp(−x/50) €  per computer quando ha venduto x computer. Quale sarà il suo guadagno totale ottenuto dalla vendita di 100 computer?

Il guadagno marginale è la velocità di variazione del guadagno rispetto al numero dei computer venduti. Quindi il guadagno dalla vendita di  dx  computer dopo che ne sono già stati venduti  x è, in euro:

dG = 15−5·exp(−x/50) dx

Il guadagno totale della vendita di 100 computer è di euro:

G = [0,100] 15−5·exp(−x/50) dx = [15x+250·exp(−x/50)]x=0…100 = 1500+250·exp(−2)−250 = 1284 €

Con WolframAlpha: