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Introduction

The author’s perspective. Mathematics and music are both lifelong pas-
sions for me. For years they appeared to be independent non-intersecting in-
terests; one did not lead me to the other, and there seemed to be no obvious
use of one discipline in the application of the other. Over the years, how-
ever, I slowly came to understand that there is, at the very least, a positive,
supportive coexistence between mathematics and music in my own thought
processes, and that in some subtle way, I was appealing to skills and instincts
endemic to one subject when actively engaged with the other. In this way the
relationship between mathematical reasoning and musical creativity, and the
way humans grasp and appreciate both subjects, became a matter of interest
that eventually resulted in a college course called Mathematics and Music,
first offered in the spring of 2002 at Washington University in St. Louis, the
notes of which have evolved into this book.

It has been observed that mathematics is the most abstract of the sciences,
music the most abstract of the arts. Mathematics attempts to understand
conceptual and logical truth and appreciates the intrinsic beauty of such.
Music evokes mood and emotion by the audio medium of tones and rhythms
without appealing to circumstantial means of eliciting such innate human re-
actions. Therefore it is not surprising that the symbiosis of the two disciplines
is an age old story. The Greek mathematician Pythagoras noted the integral
relationships between frequencies of musical tones in a consonant interval;
the 18th century musician J. S. Bach studied the mathematical problem of
finding a practical way to tune keyboard instruments. In today’s world it is
not at all unusual to encounter individuals who have at least some interest
in both subjects.

However, it is sometimes the case that a person with an inclination for one
of these disciplines views the other with some apprehension: a mathemat-
ically inclined person may regard music with admiration but as something
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vi INTRODUCTION

beyond his/her reach. Reciprocally, the musically inclined often views math-
ematics with a combination of fear and disdain, believing it to be unrelated
to the artistic nature of a musician. Perhaps, then, it is my personal mission
to attempt to remove this barrier for others, since it has never existed for
me, being one who roams freely and comfortably in both worlds, going back
and forth between the right and left sides of the brain with no hesitation.
Thus I have come to value the ability to bring to bear the whole capacity of
the mind when working in any creative endeavor.

Purpose of this book. This short treatise is intended to serve as a text for
a freshman-level college course that, among other things, addresses the issues
mentioned above. The book investigates interrelationships between mathe-
matics and music. It reviews some background concepts in both subjects
as they are encountered. Along the way, the reader will hopefully augment
his/her knowledge of both mathematics and music. The two will be discussed
and developed side by side, their languages intermingled and unified, the goal
being to break down the dyslexia that inhibits their mental amalgamation
and to encourage the analytic, quantitative, artistic, and emotional aspects
of the mind to work together in the creative process. Musical and mathe-
matical notions are brought together, such as scales/modular arithmetic, oc-
tave identification/equivalence relation, intervals/logarithms, equal temper-
ament/exponents, overtones/integers, tone/trigonometry, timbre/harmonic
analysis, tuning/rationality. When possible, discussions of musical and math-
ematical notions are directly interwoven. Occasionally the discourse dwells
for a while on one subject and not the other, but eventually the connection is
brought to bear. Thus you will find in this treatise an integrative treatment
of the two subjects.

Music concepts covered include diatonic and chromatic scales (standard
and non-standard), intervals, rhythm, meter, form, melody, chords, progres-
sions, octave equivalence, overtones, timbre, formants, equal temperament,
and alternate methods of tuning. Mathematical concepts covered include in-
tegers, rational and real numbers, equivalence relations, geometric transfor-
mations, groups, rings, modular arithmetic, unique factorization, logarithms,
exponentials, and periodic functions. Each of these notions enters the scene
because it is involved in one way or another with a point where mathematics
and music converge.

The book does not presume much background in either mathematics or
music. It assumes high-school level familiarity with algebra, trigonometry,
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functions, and graphs. It is hoped the student has had some exposure to
musical staffs, standard clefs, and key signatures, though all of these are
explained in the text. Some calculus enters the picture in Chapter 10, but it
is explained from first principles in an intuitive and non-rigorous way.

What is not in this book. Lots. It should be stated up front, and empha-
sized, that the intent of this book is not to teach how to create music using
mathematics, nor vice versa. Also it does not seek out connections which are
obscure or esoteric, possibly excepting the cursory excursion into serial music
(the rationale for which, at least in part, is to ponder the arbitrariness of the
twelve-tone chromatic scale). Rather, it explores the foundational common-
alities between the two subjects. Connections that seem (to the author) to
be distant or arguable, such as the golden ratio, are omitted or given only
perfunctory mention.

Yet it should be acknowledged that there is quite a bit of material in line
with the book’s purpose which is not included. Much more could be said,
for example, about polyrhythm, harmony, voicing, form, formants of musical
instruments and human vowels, and systems of tuning. And of course there
is much more that could be included if calculus were a prerequisite, such as
a much deeper discussion of harmonic analysis. Also missing are the many
wonderful connections between mathematics and music that could be estab-
lished, and examples that could be used, involving non-Western music (scales,
tuning, form, etc.). This omission owes itself to the author’s inexperience in
this most fascinating realm.

Overview of the chapters. The book is organized as follows:

• Chapter 1 lays out out the basic mathematical and musical concepts
which will be needed throughout the course: sets, equivalence relations,
functions and graphs, integers, rational numbers, real numbers, pitch,
clefs, notes, musical intervals, scales, and key signatures.

• Chapter 2 deals with the horizontal structure of music: note values and
time signatures, as well as overall form.

• Chapter 3 discusses the vertical structure of music: chords, conven-
tional harmony, and the numerology of chord identification.

• Musical intervals are explained as mathematical ratios in Chapter 4,
and the standard keyboard intervals are introduced in this language.
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• Chapter 5 lays out the mathematical underpinnings for additive mea-
surement of musical intervals, relating this to logarithms and exponen-
tials.

• Equal temperament (standard and nonstandard) is the topic of Chapter
6, which also gives a brief introduction to twelve-tone music.

• The mathematical foundations of modular arithmetic and its relevance
to music are presented in Chapter 7. This involves some basic abstract
algebra, which is developed from first principles without assuming any
prior knowledge of the subject.

• Chapter 8 delves further into abstract algebra, deriving properties of
the integers, such as unique factorization, which are the underpinnings
of certain musical phenomena.

• Chapter 9 gives a precursor of harmonics by interpreting positive inte-
gers as musical intervals and finding keyboard approximations of such
intervals.

• The subject of harmonics is developed further in Chapter 10, which
relates timbre to harmonics and introduces some relevant calculus con-
cepts, giving a brief, non-rigorous introduction to continuity, periodic
functions, and the basic theorem of harmonic analysis.

• Chapter 11 covers rational numbers and rational, or “just”, intervals.
It presents certain classical “commas”, and how they arise, and it dis-
cusses some of the basic just intervals, such as the greater whole tone
and the just major third. It also explains why all intervals except
multi-octaves in any equal tempered scale are irrational.

• Finally, Chapter 12 describes various alternative systems of tuning that
have been used which are designed to give just renditions of certain
intervals. Some benefits and drawbacks of each are discussed.

Suggestions for the course. This book is meant for a one-semester course
open to college students at any level. Such a course could be cross-listed as
an offering in both the mathematics and music departments so as to satisfy
curriculum requirements in either field. It could also be structured to fulfill
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a quantitative requirement in liberal arts. Since the material interrelates
with and complements subjects such as calculus, music theory, and physics
of sound, it could be a part of an interdisciplinary “course cluster” offered
by some universities.

The course will need no formal prerequisites. Beyond the high school level
all mathematical and musical concepts are explained and developed from the
ground up. As such the course will be attractive not only to students who
have interests in both subjects, but also to those who are fluent with one
and desire knowledge of the other, as well as to those who are familiar with
neither. Thus the course can be expected to attract students at all levels
of college (even graduate students), representing a wide range of majors.
Accordingly, the course must accommodate the different sets of backgrounds,
and the instructor must be particularly sensitive to the fact that certain
material is a review to some in the class while being new to others, and
that, depending on the topic, those subgroups of students can vary, even
interchange. More than the usual amount of care should be taken to include
all the students all the time.

Of course, the topics in the book can be used selectively, rearranged,
and/or augmented at the instructor’s discretion. The instructor who finds
it impossible to cover all the topics in a single semester or quarter could
possibly omit some of the abstract algebra in Chapters 7 and 8. However
it is not advisable to avoid abstract mathematical concepts, as this is an
important part of this integrative approach.

Viewing, listening to, and discussing musical examples will be an im-
portant part of the class, so the classroom should be equipped with a high
quality sound system, computer hookup, and a keyboard.

Some goals of the course are as follows:

• To explore relationships between mathematics and music.

• To develop and enhance the students’ musical knowledge and creativity.

• To develop and enhance the students’ skills in some basic mathematical
topics and in abstract reasoning.

• To integrate the students’ artistic and analytic skills.

• (if equipment is available) To introduce the computer and synthesizer
as interactive tools for musical and mathematical creativity.
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Regarding the last item, my suggestion is that students be given access to
some computer stations that have a notation/playback software such as Fi-
nale and that the students receive some basic instruction in how to enter notes
and produce playback. It is also helpful if the computer is connected via a
MIDI (Musical Instrument Digital Interface) device to a tunable keyboard
synthesizer, in which case the student also needs to have some instruction in
how the software drives the synthesizer.

Some of the homework assignments should ask for a short composition
which demonstrates a specific property or principle discussed in the course,
such as a particular form, melodic symmetry, or the twelve-tone technique,
which might then turned in as a sound file along with a score and possibly
an essay describing what was done.

The course can be enhanced by a few special guest lecturers, such as a
physicist who can demonstrate and discuss the acoustics of musical instru-
ments, or a medical doctor who can explain the mechanism of the human
ear. It can be quite educational and enjoyable if the entire group of stu-
dents are able to attend one or more musical performances together, e.g, a
symphony orchestra, a string quartet, an a capella vocal ensemble, ragtime,
modern jazz. This can be integrated in various ways with a number of topics
in the course, such as modes, scales, form, rhythm, harmony, intonation, and
timbre. The performance might be ensued in the classroom by a discussion
of the role played by these various musical components, or even an analysis
of some piece performed.

There is only a brief bibliography, consisting of books on my shelf which
aided me in writing this book. I recommend all these sources as supplements.
A lengthy bibliography on mathematics and music can be found in David J.
Benson’s grand treatise Music: A Mathematical Offering [2], which gives far
more technical and in-depth coverage of nearly all the topics addressed here,
plus more; it could be used as a textbook for a sequel to the course for which
the present book is intended.

Acknowledgements. I want to thank Edward Dunne, Senior Editor at the
American Mathematical Society, for providing the initial impetus for this
project by encouraging me to forge my course notes into a book, and carefully
reading the first draft. I also thank two of my colleagues in the Department of
Mathematics at Washington University, Professors Guido Weiss and Victor
Wickerhauser, for some assistance with Chapter 10.
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Chapter 1

Basic Mathematical and
Musical Concepts

Sets and Numbers. We assume familiarity with the basic notions of set
theory, such as the concepts of element of a set, subset of a set, union and
intersection of sets, and function from one set to another. We assume famil-
iarity with the descriptors one-to-one and onto for a function.

Following standard convention, we will denote by R the set of real num-
bers, by Q the set of rational numbers, and by Z the set of integers. These sets
have an ordering, and we will assume familiarity with the symbols <,≤, >,≥
and basic properties such as: If a, b, c ∈ R with a < b and c > 0, then ac < bc;
if a, b, c ∈ R with a < b and c < 0, then ac > bc. We will write R+ for the
set of positive real numbers, Q+ for the set of positive rational numbers, and
Z+ for the set of positive integers:

R+ ={x ∈ R | x > 0}
Q+ ={x ∈ Q | x > 0}
Z+ ={x ∈ Z | x > 0} .

The set Z+ is sometimes called the set of natural numbers, also denoted N.

Some Properties of Integers. Given m, n ∈ Z, we say “m divides n”, and
write m|n, if there exists q ∈ Z such that n = qm. Grade school arithmetic
teaches that for any positive integers m and n, we can divide n by m to get a
remainder r having the property 0 ≤ r < m. For example, in the case m = 9
and n = 123, we have 123 = 13 · 9 + 6, so r = 6. This principle generalizes
to the case where n is any integer:

1
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Division Algorithm. Given m ∈ Z+ and n ∈ Z, there exist q, r ∈ Z with
0 ≤ r < m such that n = qm + r.

We will occasionally appeal to one of the axioms of mathematics called
the Well-Ordering Principle, which states:

Well-Ordering Principle. Any non-empty subset of Z+ has a smallest
element.

This assertion looks innocent, but cannot be proved without some other
similar assumption, so it is taken as an axiom.

Intervals of Real Numbers. We will employ the following standard nota-
tion for intervals in R: for a, b ∈ R,

(a, b) ={x ∈ R | a < x < b}
[a, b] ={x ∈ Z | a ≤ x ≤ b} .

Similarly, we write (a, b] and [a, b) for the half-open intervals.

Functions and graphs. A function from some subset of R into R has
a graph, and we assume familiarity with this notion, as well as the terms
domain and range. We will often use the standard conventions which express
a function as y = f(x), where x is the independent variable and y is the
dependent variable. When the independent variable parameterizes time, we
sometimes denote it by t, so that the function is written y = f(t). A familiar
example is y = mx+ b, where m, b ∈ R, whose graph is a straight line having
slope m and y-intercept b. Another is the function y = x2, whose graph is a
parabola with vertex at the origin.

s

t

s
m = t/s

y = mx + b

(0, b)

x

y

y = x
2

x

y

Two functions which will be especially relevant to our topic are the trigono-
metric functions y = sin x and y = cos x.
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y = sin x y = cos x

Transformations of Graphs. We will need to understand some proce-
dures, called geometric transformations, which move and deform a graph in
certain ways. Let c ∈ R.

(1) Vertical shift: The graph of y = f(x) + c is obtained by shifting the
graph of y = f(x) upward by a distance of c.

(2) Horizontal shift: The graph y = f(x − c) is obtained by shifting the
graph of y = f(x) to the right by a distance of c.

(3) Vertical stretch: The graph of y = cf(x) is obtained by stretching the
graph of y = f(x) vertically by a factor of c.

(4) Horizontal stretch: The graph of y = f(x/c) is obtained by stretching
the graph of y = f(x) horizontally by a factor of c. (Here we assume
c 6= 0.)

If c in (1) or (2) is a negative number, we must understand that shifting
upward (respectively, to the right) by c actually means shifting downward
(respectively, to the left) by a distance of |c| = −c. If 0 < c < 1 in (3) or
(4) the stretchings are compressions, and if c < 0 the stretchings entail a flip
about the x-axis in (3), the y-axis in (4).

Below are graphs which illustrate some of these transformations for the
function y = x2:

y = x
2

y = x
2 + 1 y = (x + 1)2



4 CHAPTER 1. BASIC CONCEPTS

y = 2x
2 y =

(

x

2

)2

Equivalence relations. Let S be a set an let ∼ be a relationship which
holds between certain pairs of elements. If the relationship holds between s
and t we write s ∼ t. For example, S could be a set of solid-colored objects
and s ∼ t could be the relationship “s is the same color as t”. We say
that ∼ is an equivalence relation if the following three properties hold for all
s, t, u ∈ S:

(1) s ∼ s (reflexivity)

(2) If s ∼ t, then t ∼ s. (symmetry)

(3) If s ∼ t and t ∼ u, then s ∼ u. (transitivity)

When these hold, we define the equivalence class of s ∈ S to be the set
{t ∈ S | t ∼ s}. The equivalence classes form a partition of S, meaning that
S is the disjoint union of the equivalence classes.

Pitch. A musical tone is the result of a regular vibration transmitted through
the air as a sound wave. The pitch of the tone is the frequency of the
vibration. Frequency is usually measured in cycles per second, or hertz, (after
the German physicist Heinrich Hertz (1857-1894)) which is abbreviated Hz.
For example, standard tuning places the note A above middle C on a musical
staff at 440 Hz. It is notated on the treble clef as:

G ¯
The range of audibility for the human ear is about 20 Hz to 20,000 Hz. We
will, however, associate a positive real number x with the frequency x Hz, so
that the set of pitches is in one-to-one correspondence with the set R+.
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Notes. In a musical score, specific pitches are called for in a musical score by
notes on a staff. We assume familiarity with the usual bass and treble clefs

G ¯
I ¯

Middle C as it appears on the treble and bass clefs

and the labeling of notes on the lines and spaces of those clefs using the
letters A through G. These are notes are arranged as follows on a keyboard
instrument.

C D E BFB E BG A C D F G A C D

Note the presence of “white notes” and “black notes” and the pattern of
their juxtapositions.

Abstractly, we can envision a keyboard which extends infinitely (and be-
yond the range of audibility) in both directions, giving an infinite set of notes.
This infinite set does not represent all pitches, as there are pitches between
adjacent notes. We refer to those notes that appear on the extended keyboard
as keyboard notes.

We will be needing a concise way to refer to specific keyboard notes,
hence we will employ the following standard convention: The note C which
lies four octaves below middle C is denoted C0. This note is below the range
of the piano keyboard. For any integer n, the C which lies n octaves above
C0 (below C0 when n is negative) is denoted Cn. Hence middle C is C4, the
C below middle C is C3, and the lowest C on the piano keyboard is C1. The
other notes will be identified by the integer corresponding to the highest C
below that note.

The other notes will be identified by the following procedure: First, strip
away any sharp of flat alteration, and find the highest C which is lower than
or equal to that note. The original note gets the subscript of that C. Hence
the F♯ below C4 is F♯

3, while the F♯ above C4 is F♯
4. The lowest B♭ on the
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piano keyboard is B♭
0, and the B♭ in the middle of the treble clef is B♭

4. Note
also that B♯

5 and C♭
4 both coincide with C4.

Musical Intervals. The interval between two notes can be thought of infor-
mally as the “distance” between their two associated pitches. (This is to be
distinguished from the use of the term “interval” in mathematics for a subset
of R of the type [a, b].) The piano is tuned using equal temperament (to be
discussed later in detail), which means that the interval between any two
adjacent keys (white or black) is the same. This interval is called a semitone.
The interval of two semitones is a step, or major second, hence a semitone
is a half-step, sometimes called a minor second. An octave is 12 semitones.
Here is a list giving common nomenclature for various intervals:

half-step, or minor second (1 semitone)
step, major second, or whole tone (2 semitones)
minor third (3 semitones)
major third (4 semitones)
fourth, or perfect fourth (5 semitones)
tritone (6 semitones)
fifth, or perfect fifth (7 semitones)
minor sixth, or augmented fifth (8 semitones)
major sixth (9 semitones)
minor seventh, or augmented sixth (10 semitones)
major seventh (11 semitones)
octave (12 semitones)
minor ninth (13 semitones)
ninth (14 semitones)

The meaning of the term “interval” will be made mathematically precise
later, but for now we will speak in terms of steps, half steps, fourths, octaves,
etc. Also, we will later discuss small modifications of these intervals (e.g., just
and Pythagorean intervals), so to avoid confusion we sometimes refer to the
intervals between notes on the abstract infinite keyboard as keyboard inter-
vals, or tempered intervals. For example we will introduce the Pythagorean
major third, which is greater than the keyboard’s major third.

We call intervals positive or negative according to whether they are up-
ward or downward, respectively. We sometimes indicate this by using the
terms “upward” and “downward” or by using the terms “positive “ and
“negative” (or “plus” and “minus”). The interval from C4 to E3 could be



7

described as down a minor sixth, or as negative a minor sixth.

Octave Equivalence. Music notation and terminology often takes a view
which identifies notes that are octaves apart. In this scenario there are only
twelve notes on the piano, and “A” refers to any note A, not distinguishing
between, say, A5 and A1. This is nothing more than a relationship on the
set of notes in the chromatic scale: Two notes will be related if the interval
between them is n octaves, for some integer n. One easily verifies that the
three properties reflexivity, symmetry, and transitivity are satisfied, so that
this is in fact an equivalence relation. We will use the term “modulo octave”
in reference to this equivalence relation; hence, for example, B♭

2 and B♭
5 are

equivalent, modulo octave. A note which is identified by a letter with no
subscript can be viewed as an equivalence class by this equivalence relation.
Thus B♭, it can be viewed as the equivalence class of all notes B♭

n, where
n ∈ Z. We will the equivalence classes of this equivalence relation as note
classes.

This equivalence of octave identification is similarly applied to intervals:
the intervals of a whole step and a ninth, for example, are equivalent, modulo
octave. Each equivalence class of intervals has a unique representative which
is positive and strictly less than an octave. (Since intervals are often measured
in semitones or steps, this harkens to the mathematical concept of modular
arithmetic, and later we will make that connection precise.)

In the ensuing discussion of scales and keys we will adopt the perspective
of octave identification.

Accidentals. Notes can be altered by the use of sharps and flats. A sharp ♯
placed immediately before a note on the staff raises its pitch by a semitone,
a flat ♭ lowers it a semitone, and a natural ♮ cancels the effect of a sharp or
a flat. Music notation also sometimes employs the double sharp × and the
double flat ♭♭, which alter the pitch two semitones. We denote the class of
such an altered note by writing the sharp or flat as a superscript, as in D♯

or A♭. These altering devices are called accidentals. Note then that F♯ is the
same note class as G♭ and that C♭

5 is the same note as B4. When two notes
give the same pitch in this way we say they are enharmonically equivalent.
(This gives rise to an equivalence class on notes.)

Scales. The standard scale, based on C, is the sequence of ascending notes C
D E F G A B C. Since we are using octave equivalence, the last scale note C
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is redundant; the scale is determined by the sequence C D E F G A B. These
are the white keys on the keyboard. The whole-step and half-step intervals
(modulo octave) between the successive scale notes is:

C
1−→ D

1−→ E
1/2−→ F

1−→ G
1−→ A

1−→ B
1/2−→ C

This sequence 1, 1, 1
2
, 1, 1, 1, 1

2
of whole-step and half-step intervals initiat-

ing with C is incorporated in musical notation, making C the “default” key.
One has to be aware of this convention, as there is nothing in the nota-
tion itself to indicate that the distance from, say, E to F is a half-step
whereas the distance between F and G is a whole-step. The above scale
can be represented on the treble clef, starting with C4 (middle C), as:

G ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ
We will say that two sequences of pitches are equivalent if the sequence of

respective intervals is the same. Note, for example that the scale contains the
two equivalent tetrachords (i.e., four note sequences bounded by the interval
of a perfect fourth) CDEF and GABC.

Key Signatures. For the moment we will call any sequence of eight consec-
utive notes a standard scale if it is equivalent to the C scale. Note that the
sequence E♭ F G A♭ B♭ C D E♭ is a standard scale.

G 2ˇ ˇ ˇ 2̌ 2ˇ ˇ ˇ 2̌

One verifies easily that the any ascending sequence of eight consecutive
white notes which makes a standard scale must be a C to C sequence. To
get a standard scale beginning and ending with a note other than C requires
using black notes. The scales F to F and G to G require only one black note.
If B is replaced by B♭, then the F to F scale

F
1−→ G

1−→ A
1/2−→ B♭ 1−→ C

1−→ D
1−→ E

1/2−→ F

becomes equivalent to the C to C scale, and hence is a standard scale. Simi-
larly if F is replaced by F♯, the G to G scale

G
1−→ A

1−→ B
1/2−→ C

1−→ D
1−→ E

1−→ F♯ 1/2−→ G
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becomes a standard scale. This explains the key signatures for the major keys
of F and G:

G2 ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

G4 ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

A key signature merely “tailors” notes so as to effect the standard scale in
the desired key.

More generally, flatting the seventh note of any standard scale induces
a new standard scale based on the fourth note of the original scale. Hence
replacing E by E♭ in the F to F scale yields the B♭ to B♭ scale

B♭ 1−→ C
1−→ D

1/2−→ E♭ 1−→ F
1−→ G

1−→ A
1/2−→ B♭

Hence the key signature of B♭ is:

G22

Continuing this gives us a sequence of keys C, F, B♭, E♭, A♭, D♭, G♭,
C♭. (This sequence continues in theory, but subsequent key signatures will
require double flats and eventually other multiple flats.) These are shown
below, with the proper placement of flats on the bass and treble clefs.

ŽIG
C

ŽIG 2

2

F

ŽIG 22
22

B♭

ŽIG 222

222

E♭

ŽIG 2222
2222

A♭

ŽIG 22222

22222

D♭

ŽIG 222222

222222

G♭

ŽIG 2222222

2222222

C♭
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Note that each successive keynote lies the interval of a fourth (5 semitones)
above the previous. Since we are identifying notes an octave apart, it is also
correct to say that each successive keynote lies a fifth (7 semitones) below
the previous one.

Similarly, sharping the fourth note of any standard scale induces a new
standard scale based on the fifth note of the original scale, leading to the
sequence of keys C, G, D, A, E, B, F♯, C♯, shown below.

ŽIG
C

ŽIG 4

4

G

ŽIG 44

44

D

ŽIG 444

444

A

ŽIG 4444

4444

E

ŽIG 44444

44444

B

ŽIG 444444

444444

F♯

ŽIG 4444444

4444444

C♯

Notice that the two sequences of key signatures, those using flats and
those using sharps, wrap against each other, yielding three pairs of keys that
are enharmonically equivalent: D♭ ∼ C♯, G♭ ∼ F♯, and C♭ ∼ B.

Diatonic and Chromatic notes. The standard scale is called the diatonic
scale, whereas the scale containing all the notes is called the chromatic scale.
Note that the chromatic scale has twelve notes, modulo octave, as opposed
to the diatonic scale’s seven notes, modulo octave. In a given key, those notes
that lie within the diatonic scale are called diatonic notes. They form a subset
of the set of notes of the chromatic scale. (In fact, a scale can be defined as
a subsequence of the sequence of chromatic scale notes.)

Cyclic Permutations. Given a finite sequence x1, x2, . . . , xn of elements in
any set, a cyclic permutation of this set is obtained by choosing an integer i
with 1 ≤ i ≤ n, taking entries x1, . . . , x1 from the beginning of the sequence
and placing them in order at the end, so as to obtain the sequence

xi+1, xi+2, . . . , xn, x1, x2, . . . , xi
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If we were to arrange the sequence x1, x2, . . . , xn on a clock with n positions,
say, in clockwise fashion with x1 at the top, then rotate by i positions in the
clockwise direction, this cyclic permutation would be obtained by reading off
the elements in clockwise fashion, starting from the top. If we chose i = n
we would get the original sequence, so that any finite sequence is a cyclic
permutation of itself. The cyclic permutations corresponding to the integers
i = 1, . . . , n−1 are called the non-trivial cyclic permutations of x1, x2, . . . , xn.

For example, consider the sequence of numbers 7, 4, 1, 7. Its cyclic per-
mutations are the sequences 4, 1, 7, 7 , 1, 7, 7, 4 , 7, 7, 4, 1 , and 7, 4, 1, 7 , the
first three being the non-trivial ones.

Note that it is possible for a sequence to be a non-trivial cyclic permu-
tation of itself. For example, if we permute the sequence 3, 5, 3, 3, 5, 3 using
i = 3, we get the same sequence.

Modality and Key. We have designated the standard scale, in a given
key, as a sequence of notes: in C it is the sequence C D E F G A B C.
As we pointed out, the last note is redundant, since we are using octave
equivalence, so the scale is given by the 7-entry sequence C D E F G A B,
and this determines the sequence of adjacent intervals 1, 1, 1

2
, 1, 1, 1, 1

2
(which

still has 7 entries). Consider now a cyclic permutation of the standard scale.
For example, consider the sequence E F G A B C D. Note that it also names
all the notes which are white keys on the keyboard. It gives the sequence of
intervals 1

2
, 1, 1, 1, 1

2
, 1, 1, which is different from the sequence of intervals for

the standard scale. Therefore this sequence beginning with E is not equivalent
to the standard scale.

One sees that the sequence of intervals 1, 1, 1
2
, 1, 1, 1, 1

2
for the standard

scale is not equal to any of its non-trivial cyclic permutations, and hence
no non-trivial permutation of the standard scale is a standard scale. This
underlies the fact that the the seven scales obtained by cyclicly permuting
the standard scale for i = 1, . . . , 7 are distinct.

The term mode is used in music to denote the scale in which a musical
composition is most naturally accommodated. Quite often the cadences of
the piece will arrive at the first scale note, or tonic of the composition’s mode.
Each of the scales derived from the standard scale by a cyclic permutation are
modes that were used and named by the Ancient Greeks. These names were
incorrectly identified by the Swiss music theorist Heinrich Glarean (1488-
1563) in the sixteenth century, yet it was his erroneous ecclesiastical names
for the modes which became accepted. They are indicated in the chart below.
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The left column indicates the scale when played on the keyboard’s white
notes; the second column is Glarean’s name for the scale; the next eight
columns name the scale notes when played form C to C.

C-C Ionian C D E F G A B C
D-D Dorian C D E♭ F G A B♭ C
E-E Phrygian C D♭ E♭ F G A♭ B♭ C
F-F Lydian C D E F♯ G A B C
G-G Myxolydian C D E F G A B♭ C
A-A Aeolian C D E♭ F G A♭ B♭ C
B-B Locrian C D♭ E♭ F G♭ A♭ B♭ C

Musical Modes

Note that the key signature determines a unique scale in each of the seven
modes. Hence the key signature does not determine the mode: The Ionain
key of C has the same signature as the Lydian key of F, for example. To
determine the mode of a composition one has to make some observations
about the music, as described below.

The initial scale note of the modal scale of a composition is called the
keynote. The keynote together with the designation of mode, e.g., B♭ Dorian,
G Phrygian, or F♯ major (see the next section), is called the key of the
piece. Thus the key is determined by the key signature and the keynote. The
keynote can usually be identified by its frequent appearance as a returning
point in the melody and the root of chords, almost always including the final
chord (to be explained in Chapter 3), in the harmony; it is often referred to
as the tonic, or tonal center, and usually serves as a “home base” for both
melody and harmony.

Major and Minor Modes. By the eighteenth century only two modes
were considered satisfactory: the Ionian, which is our standard scale, and
the Aeolian. These became known as the and modes, respectively. With this
restriction of possibilities, each key signature represents two possibilities: a
major mode and a minor mode. The major mode has as its tonic the first scale
note of the standard, or Ionian, scale determined by the key signature and
a minor mode has as its tonic the first note of the Aeolean scale determined
by the key signature. The minor key which has the same key signature as a
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given major key is called the relative minor key for that major key. The tonic
of the relative minor key lies a minor third below that of the corresponding
major key’s tonic.

For example, no sharps or flats indicates the key of C major and the key
of A minor. The character of music determines which mode prevails.

Scale Numbers and Solmization. A basic and traditional use of numerol-
ogy in music is the numbering of scale tones. Numbers with a circumflex, or
“hat”, 1̂, 2̂, 3̂, . . ., will be used to denote specific notes of the diatonic major
scale. Thus in the key of A♭, A♭ is the first scale tone and is therefore denoted
by 1̂. B♭ is denoted by by 2̂, C by 3̂, and so on.

G2222
1̂

ˇ
2̂

ˇ
3̂

ˇ
4̂

ˇ
5̂

ˇ
6̂

ˇ
7̂

ˇ
8̂

ˇ

If we are thinking of the diatonic scale with octave equivalence, only seven
numbers are needed. However larger numbers are sometimes used in contexts
where octave identification is not being assumed; for example, 9̂ indicates the
diatonic note lying a ninth above some specific scale tonic 1̂.

Another common practice, called solmization, names the scale tones by
the syllables do, re, mi, fa, sol, la, ti.

G222
do

ˇ
re

ˇ
mi

ˇ
fa

ˇ
sol

ˇ
la

ˇ
ti

ˇ
do

ˇ

The chromatic scale tones which lie a half-step above or below diatonic
notes are denoted by preceding the number with ♯ or ♭. Hence, in the key
of G, ♭6̂ denotes E♭. (Note that this can coincide with a diatonic note, e.g.,
♯3̂ = 4̂.) Solmization also provides names for these tones, but we will not give
them here.

Exercises

1. For the following pairs of integers m, n, find the numbers q and r whose
existence is asserted in the Division Algorithm:

(a) 17, 55 ;

(b) 12,−37 ;

(c) 2, 221 + 3 ;
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(d) 7, 14k + 23, where k is some integer.

2. Sketch the graphs of these functions, and indicate how each is obtained
by geometric transformations (shifts and/or stretches) of simpler func-
tions:

(a) f(x) = 1
3
x − 1

(b) f(x) = x2 + 1

(c) f(x) = cos x + x

3. For each of the following sets and relations determine whether or not
an equivalence relation has been defined. Explain why or why not.

(a) The set of people alive now; “ has the same mother as”.

(b) R ; ≤ .

(c) Z ; for a fixed positive integer n, ≡ defined by k ≡ ℓ iff n | (k − ℓ).

(d) The set of notes on the piano keyboard; ∼ defined by N ∼ N ′ if
and only if the interval between N and N ′ is a major third.

4. For the set {(a, b) ∈ Z2 | b 6= 0} show that the relation ∼ defined by
(a, b) ∼ (a′, b′) iff ab′ − a′b = 0 is an equivalence relation and that the
set of equivalence classes is in one-to-one correspondence with Q.

5. Identify these notes by letter and subscript (e.g., D3 or A♯
1):

(a) G ¯ (b)
I222 ¯ (c) G4444

¯
(d)
I2
¯

6. Identify these intervals:

(a) G2 ¯¯ (b)
I22 ¯¯ (c) G4444 ¯¯ (d) G44 ¯¯

7. Choosing an appropriate clef, write on staff paper, and name with sub-
script, the note which is:
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(a) a minor third above D2.

(b) a fifth above F♯
2.

(c) a major ninth below C♯
6.

(d) a tritone below E♭
4.

8. Suppose we have an eight-note scale (with first and eighth notes an
octave apart) such that the sequence of intervals of adjacent notes
contains only the numbers 1

2
and 1. Is it possible that this scale is

a non-trivial cyclic permutation of itself? If so, give an example. If not,
explain why not.

9. Answer the same question as in the last problem, but for a nine-note
scale having the same property.

10. For the following modes and tonic notes, indicate the appropriate key
signature on staff paper:

(a) Lydian with tonic G.

(b) Dorian with tonic B♭.

(c) Locrian with tonic D♯.

(d) Phrygian with tonic A.

11. Transpose this melodic exerpt, written in C minor, up to E minor.
Preserve the scale-tone spelling of each melody note.

G 222 4
4 ˇ ˇ ŽŽ̌ ˇ ˇ 4ˇ ˇ ˇ ˇ ˇ` (ˇ ˇ ˇ ˇ ˇ 6ˇ 6ˇ ¯
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Chapter 2

Horizontal Structure

In mathematics, time is often parameterized by a horizontal axis (x-axis, or
t-axis). Since music is perceived through an interval of time, it is represented
visually by its placement along a horizontal axis. On a musical staff the pro-
gression from left to right represents the passing of time, while the vertical
axis (y-axis) designates pitch. Thus we refer to its temporal aspects, e.g., the
durations of sustained notes and the sequence of events and episodes, as its
horizontal structure. One way in which most music strives to interest and
please the listener is through the presentation of temporal patterns which
are satisfying and cohesive. The notation and organization of music’s hori-
zontal structure contain a number of relationships with basic mathematical
concepts.

Duration of Notes. Time durations in music are often measured in beats,
which are the temporal units by which music is notated. Frequently one beat
represents the time interval by which one would “count off” the passing of
time while the music is performed. The term tempo refers to the frequency
of this count-off, usually measured in beats per minute. 1 In a musical score
the basic designator of duration is, of course, the note, and the duration of
notes is determined by such things as note heads, stem flags, dots, ties, and
tuplet designations.

The durational names of notes in Western music are based on the whole
note, which has a duration in beats (often four) dictated by the time sig-

1It should be said that music is not always performed with a constant tempo; a com-
position may have internal tempo changes or passages performed ad lib or with rubato, in
which strict tempo gives way to artistic liberty.

17
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nature, which will be discussed later in this chapter. Notes whose duration
has proportion 1/2n, n a non-negative integer, with that of the whole note
are named according to that proportion. Thus, if the whole note has a cer-
tain duration in beats, then the half note has half that duration, the quarter
note has one fourth that duration, etc. In the situation where a whole note
gets four beats, then a half note gets two beats and the sixty-fourth note
represents one sixteenth of a beat.

We will use the (non-standard) term durational note to mean a note dis-
tinguished by its duration, such as half note or quarter note, independent
of its associated pitch. Observe that these designations for notes tacitly em-
ploy the concept of equivalence class. Here we are declaring two notes to be
equivalent if they have the same duration, so that “durational note” refers
to the equivalence class of all notes having a given duration (e.g., “half note”
designated to the equivalence class of all half notes, regardless of their pitch.)
This is to be distinguished from octave equivalence, discussed in Chapter I,
whose equivalence classes are called “note classes”.

The pitch of a note is dictated by the vertical position of its notehead on
the staff. The duration of the note of the note is dictated by several details
which we will discuss individually. They are:

1. whether the interior of the notehead is filled.

2. the presence or absence of a note stem, and, if present, the number of
flags on the stem or the number of beams attached to the stem.

3. the number of dots following the note, if any.

4. the tuplet designation of the note, if any.

Noteheads, Stems, Flags, and Beams. The whole note and half note are
written with an unfilled notehead. For n ≥ 2 the 1

2n -th note is written with
a filled notehead. All 1

2n -th notes except the whole note (i.e., the case n = 0)
possess a note stem, which either extends upward from the right side of the
notehead or downward from the left side of the notehead. For n ≥ 3, the
1
2n -th note’s stem is given n − 2 flags. Thus an eighth note (n = 3) has one
flag, a sixteenth note (n = 4) has two flags, etc.

whole note

¯
half note

˘
quarter note

ˇ
eighth note

-ˇ
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sixteenth note

.ˇ
thirty second note

/
ˇ

sixty fourth note
0
ˇ

In adjacent notes, flags may be replaced by beams connecting the stems:

ˇ ˇ = (ˇ (ˇ ˇ ˇ ˇ = (ˇ )ˇ )ˇ (ˇ` )ˇ = ` ˇ ˇ
(The third example above will be clarified by the section on dots below.)
Pitches which are are to be sounded simultaneously may be notated by having
two or more noteheads sharing a common stem, as in this passage:

G ˇ ĽĽ̌ ˘˘˘ ˇÛÛ̌ ˘˘˘ ˇ2ˇˇ ˘˘ ˘ ˇˇ ˇ ˘˘ ˘

Rests. A rest is a notational symbol which indicates silence for a duration
determined by the type of rest which appears. Rests come in the same dura-
tional types as notes, distinguished by their appearance. The whole rest, for
example, is a rectangle attached on the underside of a staff line. This and
other rests are as indicated below.

whole rest

=
half rest

<
quarter rest

>
eighth rest

?
sixteenth rest

@
thirty second rest

A
sixty fourth rest

B

The vertical position of rests on a staff is generally as indicated above, but
not always. Some circumstances make it more desirable to place them on a
higher or lower line, for example when two vocal parts (e.g., soprano and
alto) share the same staff and the rest occurs in only one of the parts.

Dots. The dot beside a note or rest extends its duration by one half its
original duration or equivalently, multiplies the original duration by 3/2.
Hence a dotted sixteenth note’s duration in beats (still assuming for the
moment that the whole note gets four beats) is given by 1

4
(1+ 1

2
) = 1

4
· 3

2
= 3

8
.

A second dot beside the note calls for an additional duration of one fourth the
original duration (in addition to the extra duration elicited by the first dot),
so that, in the above situation, a sixteenth note with two dots has duration
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1
4
(1 + 1

2
+ 1

4
) = 1

4
· 7

4
= 7

16
. Although it may seem like a purely academic

exercise (since only rarely are more than two dots used), we observe that a
note of duration d followed by m dots has duration dm given by

dm =d (1 +
1

2
+

1

22
+ · · · + 1

2m
)

= d
m∑

i=0

(
1

2

)i

= d

[

1 −
(

1
2

)m+1

1 − 1
2

]

= d

[

2

(

1 −
(

1

2

)m+1
)]

.

= d

[

2 −
(

1

2

)m]

= d

[

1 + 1 − 1

2m

]

= d

[

1 +
2m − 1

2m

]

The third line in the sequence of equalities above uses the fact

m∑

i=0

ri = 1 + r + r2 + · · ·+ rm =
1 − rm+1

1 − r
,

which holds for any integer m ≥ 0 and any real number r 6= 1. The proof of
this will appear as an exercise.

Perhaps the most enlightening expression for dm in the above string of
equalities is the third to last expression d[2 − (1

2
)m], which we restate:

A note of duration d followed by m dots has duration

dm = d

[

2 −
(

1

2

)m]
(2.1)

It becomes apparent from this formula that the duration of an m-dotted
note approaches 2d as m becomes large (d being the duration of the undotted
note). This is expressed by saying [2 − (1

2
)m] approaches 2 as m tends to

infinity, or

lim
m→∞

[

2 −
(

1

2

)m]

= 2 .

It is also apparent that the value of dm is always smaller than 2d. The fact

that the sums
∑m

i=0

(
1
2

)i
approach 2 as m gets large is expressed in the infinite

summation ∞∑

i=0

(
1

2

)i

= 2 . (2.2)
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These notions, which involve the concept of limit, are made precise in calcu-
lus.

Let us use the the boxed formula (2.1) above to calculate a certain du-
ration. Suppose we are in a context where a whole note has 2 beats (e.g.,
when the time signature is 2

2
, which will be explained later in this chapter).

We then ask: What is the duration of a triply dotted sixteenth note? We
first calculate the duration d of the undotted sixteenth note as 1

16
-th of the

duration of a whole note, or d = 1
16
·2 = 1

8
. Here the number of dots is m = 3,

so the formula gives

d3 =
1

8

[

2 −
(

1

2

)3
]

=
1

8

(

2 − 1

8

)

=
1

8
· 15

8
=

15

64
.

The duration is 15
64

-ths of a beat.

Tuplets. Note that music’s temporal notation is highly oriented around the
prime number 2 and its powers. We do not use terms like “fifth note” or
“ninth note.” To divide the 1

2n -th note into k equal notes, where k is not a
power of 2, we form a k-tuplet as follows. Find the unique positive integer r
such that

2r < k < 2r+1

and notate the tuplet as a group of k 1
2n+r -th notes overset or underset by

the integer k. The resulting tuplet is called the 1
2n+r -th note k-tuplet. This is

the most basic form of polyrhythm, which is the imposition of simultaneous
differing rhythms.

For example, suppose we wish to divide the quarter note ( 1
22 -th note) into

3 equal pieces, forming a triplet. Here n = 2, and since 21 < 3 < 22, we have
r = 1. We write a sequence of 3 1

22+1 -th notes, or eighth notes, overset by
3, forming an eighth note triplet. If, instead, we want to divide the quarter
note into 5 notes of equal duration, we note that 22 < 5 < 23, so r = 2, so
we write a sequence of 5 1

22+2 -th notes, or sixteenth notes, overset by 5. We
call this a sixteenth note 5-tuplet.

G
3

ˇ
eighth note triplet

ˇ ˇ G
5

ˇ ˇ
sixteenth note 5-tuplet

ˇ ˇ ˇ
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The concept of dividing a unit of duration into n equal parts by an n-
tuplet has an interesting similararity to the notion of the nth harmonic,
which is a vibration n times faster than the vibration of a fundamental pitch.
Harmonics will be discussed in Chapter 10.

Ties and Slurs. Two notes of the same pitch may be connected by a tie,
which is a curved line that indicates they are to be considered as one note
whose value is the sum of the durations of the two tied notes. Hence, if a
whole note gets four beats, then the tying of a quarter note, whose duration
is 1, to a dotted sixteenth, whose duration is 1

4
(1 + 1

2
) = 3

8
,

I ˇ ˆ ` .ˇ
gives a duration of 1 + 3

8
= 11

8
beats.

Closely related is the slur, which looks like a tie but connects notes of
different pitches.

I ˘ – ˇ
This indicates to the performer that he/she should proceed from one pitch
to the next with no (or minimal) rearticulation. For example, a violinist
interprets this to mean the notes should be played with one stroke of the
bow.

Meter. A piece of music is commonly divided into groups of n beats, for some
integer n ≥ 1. Such groups are called measures or bars. The meter of the piece
is the number n of beats per measure together with an assignment of which
durational note gets one beat’s duration. These parameters are specified by
the time signature— of the piece, which is placed just after the clef symbol
(and at subsequent positions if the meter changes). The time signature is
comprised of two integers n

r
where n ∈ Z+ and r is a power of 2. (We refrain

from writing n
r

to avoid confusion with fractions.) The meanings of n and r
are given as follows:

Usual meaning. The top integer n specifies the number of beats to a
measure and the bottom integer r = 2m designates that the 1

2m -th note gets

one beat. Thus the time signature 2
4

indicated 2 beats to a measure with a
quarter note getting one beat.
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Exceptional case. 3 divides n and n > 3 : In this situation we usually
interpret the meter to be a compound time signature, which means the num-
ber of beats to a measure is taken to be n/3 rather than n; thus three 1

2m -th
notes give one beat (where, again, r = 2m). This means that one beat is sig-
nified by a dotted 1

2m−1 -th note. Thus in 6
8

time there are 6/3 = 2 beats per
measure and one beat is signified by three eighth notes, or a dotted quarter
note.

In practice, the integer r in a time signature n
r

is nearly always 2, 4, or 8.

Rhythm. Rhythm is the way in which time is organized within measures.
Consider these examples:

4
4

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˘

9
8

ˇ` ˇ` ˇ ˇ ˇ ˇ (ˇ ˇ` ˇ ˇ ˇ ˇ (ˇ ˇ ˇ ˇ ˇ (ˇ ˘` `>
Upon playing these in tempo (by simply tapping) one observes that a certain
amount of musical satisfaction arises from the artistic variation in the ways
the measures are filled with durational notes. Rhythms can be straighforward
or subtle. Jazz often avoids the obvious by temporarily obscuring the meter
using complex sequences.

Sometimes certain types of rhythms are implied but not written, swing
rhythm being the prime example. In a piece where the figure consisting of
an eighth note triple with the first two notes tied is pervasive, the triplet
notation becomes cumbersome and is often suppressed. The figure is simply
denoted by two eighth notes. This is usually indicated by the words “swing
rhythm”, or a marking such as

ˇ ˇ =

3

ˇ 6 ˇ ˇ

placed above the first measure of the piece. Of course, this rhythm can be no-
tated precisely by using one of the compound time signatures 3n

8
and writing

it as a quarter note followed by an eighth note.

Rules about accidentals. It is important to know that when an accidental
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occurs it applies thereafter within the measure to all notes having same note
class as the altered note, unless the accidental is cancelled or changed by an-
other accidental. When an altered note is tied to another note, the alteration
on the first note applies also to the second note even if the second note lies in
the next measure. In the latter situation the accidental does not applies to all
notes of the same note class in the measure containing the second note. Thus,
in the following excerpt all Ds are D-naturals, and the second accidental is
required to effect this.

G2222 6ˇ ˇ ˇ ˇ ; ˇ ˇ 6˘
Sometimes, for the benefit of the reader, music includes accidentals which are
not required according to the rules given above. Such redundant accidentals
are called cautionary accidentals, and are enclosed in parentheses.

Melody. Melody is the succession of notes (single pitches with prescribed
duration) which are most prominent in a musical composition and which
serve to define and characterize the piece. Melody is the sequence of notes in
a popular song that a solo vocalist sings, while other notes are being played in
accompaniment. In a symphony the melody is often (but not always) played
by the highest instrument, typically the first violin section.

It should be emphasized that a melody is defined and made recognizable
not only by it’s sequence of pitches, but by its rhythm. This is exemplified
by the descending scale in the Ionian (major) mode,

G ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ
which by itself evokes no particular song. However, the same sequence of
pitches set to the rhythm

G 4
4
ˇ `
-ˇ )ˇ ` ˇ (ˇ ˇ ˇ ` ˇ

is immediately recognized as Joy To The World.

Repeating Patterns. One way music achieves cohesion is through the rep-
etition of certain melodic patterns, often with variation and embellishment.
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This can mean repeating a major section of the piece or, more “locally”, by
juxtaposing brief melodic figures. The former phenomenon will be discussed
later under form. For the moment, however, we will discuss the local types
of repetitions which correspond to the mathematical concept of geometric
transformation.

Translations. A simple example of such is a horizontal shift, or translation,
which is effected in the graph of a function y = f(x) when we replace it by
y = f(x− c) (see Chapter 1). This often appears in music as the repetitions
(horizontal translation) of the sequence of pitches or the rhythmic pattern.
Here is a familiar example which illustrates rhythmic translation:

G 2R
Get

(ˇ
out

ˇ
the

(ˇ
way,

˘
old

ˇ
Dan

ˇ
Tuck-

(ˇ
er!

`ˇ
Get

(ˇ
out

ˇ
the

(ˇ
way,

˘
old

ˇ
Dan

ˇ
Tuck-

(ˇ
er!

`ˇ

G 2
Get

(ˇ
out

ˇ
the

(ˇ
way,

˘
old

ˇ
Dan

ˇ
Tuck-

(ˇ
er!

`ˇ
You’re

ˇ
too

ˇ
late

` ˇ
to

(ˇ
come

ˇ
to

ˇ
sup-

(ˇ
per.

` ˇ

Note that the rhythm of the first two bars is repeated twice, while the se-
quence of pitches varies.

An example of melodic (as well as rhythmic) translation is found in the
spiritual When The Saints Go Marching In,2

G 2R
Oh,

ˇ
when

ˇ
the

ˇ
Saints

¯ ˇ ˇ
go

ˇ
march-

ˇ
ing

ˇ
in,

¯ ˇ ˇ
Oh,

ˇ
when

ˇ
the

ˇ
Saints

˘

where the melodic sequence F-A-B♭-C appears three times consecutively.

Transposition. When a repeating pattern is being represented melodically,
it is possible to also apply a vertical shift or transposition, analogous to
replacing the graph of y = f(x) by that of y = f(x) + c. Such a shift
may repeat a melodic excerpt, transposing each note upward or downward
by a fixed chromatic interval, as in the first sixteen bars of George and Ira
Gershwin’s Strike Up The Band, in which the second eight measures repeat
the melody of the first, transposed up by the interval of a fourth.

2This example is given in [4], as does the excerpts from O Tannenbaum and Raindrops

Keep Falling On My Head, which appear a little later in this discussion.
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G 22R
Let

` (ˇ
the

6 )ˇ
drums

ˇ
roll

ˇ
out!

˘ < `˘
Let

` (ˇ
the

6 )ˇ
trum-

ˇ
pet

2ˇ
call!

˘ = `˘
While

` (ˇ
the

6 )ˇ

G 22
peo-

ˇ
ple

˝^ ˇ
shout!

˘ ; ˘
Strike

(ˇ
up

ˇ
the

(ˇ
band!

¯ ˚ ` ˘
Hear

`
-ˇ

the

)ˇ
cym-

ˇ
bals

ˇ
ring!

˘ ; ` ˘
Call-

`
-ˇ

ing

)ˇ

G 22
one

ˇ
and

2ˇ
all!

˘ <
` ˘

To

`
-ˇ

the

)ˇ
mar-

ˇ
tial

˝^ ˇ
swing

˘ < ˘
Strike

-ˇ
up

ˇ
the

-ˇ
band!

¯ ˇ ˘

This type of transposition exemplified above is called chromatic transposition.

A variant form of transposition, called diatonic transposition, occurs when
a diatonic melody is moved up or down by the same number of diatonic scale
tones, producing a melody having the same general shape, but with chro-
matic intervals not perfectly preserved due to the differing intervals between
adjacent diatonic notes. This occurs on the German Carol O Tannenbaum (O
Christmas Tree). Note that the the first bracketed sequence below is shifted
downward by one diatonic scale tone in the second bracketed sequence.

G 23
4

Ǒ Christ-

` (ˇ
mas

)ˇ
tree,

` ˇ
O

(ˇ
Christ-

` (ˇ
mas

)ˇ
tree,

`ˇ
Your

(ˇ
col-

(ˇ
or

(ˇ
is

ˇ
un-

ˇ
chang-

ˇ
ing

ˇ

G 2 ?
︸ ︷︷ ︸

When

-ˇ
from

-ˇ
all

(ˇ
trees

` ˇ
the

-ˇ
col-

(ˇ
ors

(ˇ
go,

` ˇ
︸ ︷︷ ︸

You

-ˇ
still

-ˇ
are

(ˇ
green

` ˇ
a-

-ˇ
midst

(ˇ
the

(ˇ
snow.

ˇ

Retrogression. Yet another form of transformation in music is retrogression,
which is analogous to the mathematical notion of horizontal reflection. Such
a reflection is exemplified when we replace the graph of y = f(x) with that of
y = −f(x), reflecting the graph around the y-axis. In music, “retrogression”
means “inverting the order of notes”, so that the resulting sequence forms a
reflection of the initial one. In this excerpt from Raindrops Keep Falling On
My Head, note the symmetry of the melody around the point designated by
∧ :
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G44
Rain-

ˇ
drops

` ˇ
keep

ÌÏÏˇ
fall-

` ˇ
∧

ing

ĘĽĽ̌
on

` ˇ
my

ÆÉÉˇ
head,

ˇ
they

` (ˇ

Form. The sequence of larger sections of music into which music may be
organized is sometimes called form. The number of measures in a section is
often a power of 2. For example, ragtime compositions typically consist of
three or four sections, each section having 16 measures; sometimes one or
more of these sections is repeated once. These sections are distinguishable
by the listener by virtue of different rhythmic and melodic character. If a
composition consisted of three sections, we might denote the form by: ABC.
If the first two sections were repeated, the form would be AA BB C. Scott
Joplin’s (1868-1917) Maple Leaf Rag has the form AA BB A CC DD.

Two classical type forms are binary form and ternary form. The former
presents a piece of music as two main sections which are repeated, giving a
form AABB. Many of the minuets and scherzos of the late 18th and 19th
centuries have this form. Ternary form presents three sections, with the first
and third being the same, or very similar, giving C pattern ABA. It often is
found in the nocturnes of Frédérik Chopin (1810-1849) and the piano pieces
of Johannes Brahms (1833-1897).

Most songs in American popular music and folk music can be naturally
divided into 8-bar segments, some of which typically recur. One common
pattern is AABA, exemplified by the Tin Pan Alley song Five Foot Two,
Eyes of Blue. If a section bears strong resemblance to another, it may be given
the same letter followed by ′. For example, the form of the song Edelweiss is
represented by AA′BA′.

Symmetry. The word symmetry is used in music in general reference to the
phenomena of transformations and repeating sections. A compositional goal
in many styles of music is to create balanced portions of unity and contrast -
enough repetition to give a piece interest and cohesion, but not so much as to
make it repetitive or boring. As an example of a simple piece which illustrates
the use multiple symmetries, let us refer back the the carol O Tannenbaum.
Here the form of the complete chorus is AABA, but each section has internal
symmetries as well. Both the A and B sections incorporate melodic trans-
position and rhythmic tranlation, with the B section featuring a downward
diatonic transposition, discussed earlier in this chapter.
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Exercises

1. In 4
4

time, give the duration in beats for:

(a) a dotted thirty-second note

(b) a half note with four dots

(c) a quarter note tied to a sixteenth note with three dots

2. In 12
8

time, taken as a compound time signature, give the duration in
beats for:

(a) a dotted eighth note

(b) a quarter note tied to a sixteenth note

(c) a thirty-second note with three dots

3. Prove the equation:

1 + r + r2 + · · · + rm =
1 − rm+1

1 − r
.

for any integer m ≥ 0 and any real number r 6= 1. (Hint: Consider the
product (1 − r)(1 + r + r2 + · · · rm).)

4. Notate and name the following tuplets:

(a) that which divides the quarter note into 5 equal notes

(b) that which divides the eighth note into 3 equal notes

(c) that which divides the whole note into 11 equal notes

5. Notate and give the total duration, in 4
4

time, of:

(a) a sixteenth note septuplet

(b) a half note triplet

(c) a quarter note 17-tuplet

6. Complete these measures with a single durational note:
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(a) 3
4

ˇ (ˇ (b) 4
4

(ˇ ˇ (ˇ )ˇ

(c) 9
8

` ˇ ˇ (ˇ

7. Complete the following excerpt three ways with a measure having the
same rhythm,

G222244 ˇ ` (ˇ )ˇ ˇ
ŻŻ̌ ˇ

employing, respectively:

(a) diatonic transposition up one scale tone

(b) diatonic transposition up three scale tones

(c) chromatic transposition up a minor third

Which of of these, if any, represent both diatonic and chromatic trans-
position?

8. Which fractions of a whole note can be achieved using only 1
2n -notes,

for various n, along with dots and ties? Justify your answer.

9. Give the form (e.g., ABAC or ABA) of the following songs (one chorus
only):

(a) Let Me Call You Sweetheart

(b) My Bonnie Lies Over The Ocean

(c) Let It Be

(d) The Rose

10. For the refrain of the song Someone To Watch Over Me, by George
Gershwin and Ira Gershwin, give the form (e.g., ABAC or ABA) by
dividing the refrain into segments consisting of eight measures.
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For the same refrain, locate transformations such as translation (melodic
and/or rhythmic) and transposition (diatonic and/or chromatic), other
than those that are dictated by the global form determined above.



Chapter 3

Harmony and Related
Numerology

Harmony. Harmony is that aspect of music in which different pitches are
sounded simultaneously. The earliest harmony in Western music consisted
of parallel octaves, fourths and fifths. Over the centuries a rich array of
harmonic patterns and clichès has evolved, and later we will examine some
of these patterns and the role mathematics played in their development. The
basic harmonic building block is the chord, which is a collection of notes,
usually three or more, sounded simultaneously. Chords have a type which is
determined by the intervals, modulo octave, between the notes in the chord.
A chord also has a numerical label which is determined by its juxtaposition
with the tonic note of the key.

Intervals and Modular Arithmetic. Before launching our discussion of
harmony, we introduce the notion of modular integers, which allows us to
refine the notion of modular interval as defined in Chapter 1.

It was given in an excercise in Chapter 1 to show that, for a fixed integer
n ∈ Z+, the relation k ≡ ℓ defined by n | (k− ℓ) is an equivalence relation on
the set of integers Z. We express this relationship by saying “k is congruent
to ℓ modulo n”, or k ≡ ℓ mod n. It is easily seen that k ≡ ℓ mod n if and
only if k and ℓ have the same remainder r obtained from n using the the
Division Algorithm: k = qn + r (see Chapter 1), and that each equivalence
class contains precisely one of the integers {0, 1, 2, . . . , n − 1}. Hence there
are m equivalence classes. We denote the set of equivalence classes by Zn.

The case n = 12 has a special significance in music, as follows. By mea-

31
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suring intervals in semitiones, the set of intervals is identified with the set Z

of integers, with an integer k corresponding to the interval of k semitiones,
upward if k is positive, downward if k is negative. With this identification,
equivalence modulo 12 is nothing more than octave identification: Two in-
tervals k semitones and ℓ semitones are equivalent modulo octave if and only
if k ≡ ℓ mod 12. Accordingly, each equivalence class of intervals contains a
unique interval of r semitones with 0 ≤ r < 12 (i.e., a non-negative interval
less than an octave), and this r is obtained as the remainder in the Division
Algorithm with n = 12.

For example, the interval of a ninth, which is 14 semitones, is equivalent
to the interval of a step, 2 semitones, since 14 ≡ 2 mod 12. Similarly, one
verifies that down a fourth is equivalent to up a fifth, since −5 ≡ 7 mod 12.

In some contexts when we speak of musical intervals, we actually mean
interval classes modulo octave, of which there are twelve. We will try to make
this distinction clear at all times. Note that there is a well-defined interval
class between any ordered pair of note classes, which can be represented
uniquely by a non-negative interval less than an octave. For example, the
interval from E♭ to B is represented by 8 semitones, or a minor sixth.

Major Chord. The first chord we will consider is is the major chord, which
consists of a note sounded simultaneously with the notes which lie a major
third and a fifth above the given note. Below are some examples of major
chords:

G ¯¯¯
I22 ¯¯
¯

G4444 ¯4¯¯

The note of the major chord which has chord notes lying a major third
and a fifth above it is called the root. The two subsequent notes are called
the third and fifth, respectively. Thus in the middle example above, the root
of the major chord is F, the third is A, and the fifth is C.

In general, chords are defined by the note classes (and modular intervals)
they employ. Thus any of the notes in a chord may be displaced and/or
doubled by the interval of one or more octaves. Hence the following variations
are also major chords:
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G ¯¯
¯ ăIG22

22

¯¯¯
¯
¯¯¯ G4444 ¯¯4¯¯

Voicing. The term voicing is used to denote the particular way a chord is
written, i.e., the specific notes, as opposed to note classes, which are chosen.
Observe that the root need not be the bottom note. In the rightmost voicing
above, the lowest note is the fifth of the major chord. But observe that,
regardless of the voicing, there is no abiguity about which note is the root,
third, or fifth of a major chord. That is because, like the standard scale, the
sequence of modular intervals (4, 3, 5) (measured in semitones by elements of
Z12) between successive note classes comprising the major chord

root
4−→ third

3−→ fifth
5−→ (root)

has the property that no non-trivial cyclic permutation of the sequence gives
the same sequence, in other words it has no non-trivial cyclic symmetries.

Minor Chord. The minor chord is defined by the sequence of modular
intervals (3, 4, 5). Thus it consists of a root together with the the notes which
lie a minor third and a fifth, modulo octave, above the root. As with the major
chord, the two successive tones are called third and fifth,

root
3−→ third

4−→ fifth
5−→ (root)

and again the root, third and fifth are uniquely determined by the sequence
of modular intervals. Here are some minor chords.

G 2̄̄̄ ăIG222
222

¯¯
¯¯¯ G44 ¯¯¯¯

Triads. Chords which contain exactly three notes, modulo octave, are called
triads. The major and minor chords are examples. Triads have been a funda-
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mental part of harmony in Western music since the seventeenth century. The
term triadic is sometimes applied to music that primarily features triads.

To avoid any possible confusion between the major chord and other chords
that contain the major chord (to be introduced below), we often refer to the
major chord as the major triad. Similarly we use the term minor triad for
the minor chord.

Diminished and Augmented Chords. Two other triads which play sig-
nificant roles in Western music are the diminished chord, defined by the
sequence of modular intervals (3, 3, 6), and the augmented chord, defined by
the sequence (4, 4, 4).

G
diminished

¯¯¯ G
augmented

¯¯4¯

Note that the augmented chord, unlike all the previously introduced chords,
has no discernable root. Any cyclic permutation of its sequence of intervals
gives the same sequence.

Seventh Chord. We now introduce some important four-note chords. The
first is the seventh chord, defined by the sequence of intervals (4, 3, 3, 2). The
notes are called root, third, fifth and seventh, respectively.

root
4→−→ third

3→−→ fifth
3→−→ seventh (

2→−→ root)

This sequence has no non-trivial cyclic symmetries, hence the root, third,
fifth, and seventh are distinguishable. Examples are:

G ¯¯¯2¯ ăIG4
4

¯¯
¯¯¯

G22222 ¯¯6¯¯
¯

Observe that this chord contains the major chord with the same root, third,
and fifth. We will later say quite a bit about this chord’s role in the de-
velopment of Western harmony and the tuning obstacles associated with it.
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Minor Seventh Chord. Another four-note chord to be introduced here
is the minor seventh, defined by the sequence (3, 4, 3, 2), which admits no
non-trivial cyclic symmetries. Its notes are also called root, third, fifth, and
seventh. Here are examples.

G ¯¯¯¯ ăIG22
22

¯¯¯
2¯
2¯2¯ G444 ¯¯¯¯

¯

The minor seventh chord contains the minor chord having the same root,
third, and fifth.

Major Seventh Chord. A somewhat dissonant variation is the major sev-
enth chord, which has the sequence (4, 3, 4, 1). It also admits no non-trivial
cyclic symmetries. Observe that it, like the seventh chord, contains the major
triad, the difference being that the interval from the fifth to the seventh is a
major third rather than a minor third.

G ¯¯¯¯ ăIG2222
2222

¯¯¯
¯¯
¯

G44 6 ¯2¯¯
¯

This type of harmony became popular in the twentieth century, and is one
of the characteristic sounds of “smooth jazz”. The dissonance arises with the
semitone interval between the note class of the seventh and that of the root.

Diminished Seventh. The diminished seventh, or full diminished chord is
defined by the sequence of modular intervals (3, 3, 3, 3). Like the augmented
chord, every cyclic permutation of its sequence gives the same sequence, so
it too has no discernible root. Here are two examples:

G ¯¯¯2¯ G ¯4¯¯
4¯
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This chord imparts a feeling of tension or instability. It often resolves to a
more consonant chord, such as a major or minor triad.

Half-Diminished Seventh. The half-diminished seventh, chord is defined
by the sequence of modular intervals (3, 3, 4, 2). It has a discernible root,
having no non-trivial cyclic permutations. Examples:

G ¯¯2¯¯ G4 6¯¯¯
¯

This chord also has a somewhat unstable aura and suggests the need for
resolution. Like the seventh, it often resolves around the circle of fifths.

Chord Labeling. Chords are often labeled and/or denoted by identfying
the root followed by a suffix which indicates the type of chord. The root
can be labeled by identifying a specific note class, such as D or B♭, or a
scale tone. In the later case the scale tone is indicated by Roman numeral,
possibly preceded by ♯ or ♭, such as III or ♭VI. For this the proper mode must
be incorporated.

There are various conventions for writing the suffix which indicates the
chord type. We will adhere to the following notations for these suffixes:

• major triad: no suffix

• minor triad: m

• augmented: aug or +

• diminished: dim or 0

• seventh: 7

• minor seventh: m7

• major seventh: M7

• diminished seventh: 07

• half-diminished seventh: ∅7
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For example, a major triad whose root is C is denoted by C. In the key of F
major, it would be denoted V. In the key of A minor, it would be denoted
III. The minor seventh chord whose root is F♯ is denoted F♯m7. In the key
of D major, it would be IIIm7. In the key of G minor, it would be denoted
♯VIIm7. We often label augmented or diminished seventh chords, which have
no discernable root, by declaring the root to be the lowest note in its voicing.

Here are some chords labeled according to the note class of the root.

G
Dm

¯¯¯¯ G444
E7

¯¯¯¯ G2
C aug
¯¯4¯

I2222
B♭m7

¯¯¯
¯

Below are some chords labeled according to the scale tone numeral of the
root. Here we assume the major (Ionian) mode.

ăIG22
22

IVm7
¯¯¯
2¯
2 ¯2¯ ăIG

I dim

4̄̄¯
44̄̄̄ ăIG4

4

V

¯¯¯
¯¯ ăIG4444

4444

VII7

¯4¯
¯5¯

Chapter 11 will present mathematical reasons why certain chords seem
to possess a “harmonious”, or consonant, quality, while others have a more
“clashing”, or dissonant, effect.

Alternate Chord Labeling. Another quite common method of chord la-
beling uses uppercase and lower case letters/numerals to indicate whether
the third of the chord is major or minor, respectively. Thus a minor seventh
chord rooted on B♭ would be denoted b♭7 and a minor triad rooted on scale
tone 4̂ is written iv. All other suffixes are the same, generally choosing the
second alternatives listed above for the diminished and augmented triads.
Thus the diminished triad on 2̂ is written ii0.

Chord Spelling. As we noted in Chapter 1, the use of accidentals enables
any keyboard note to be written more than one way. For example, A♯ renders
the same pitch as B♭, and G is A♭♭. In musical notation, the term “spelling”
refers to the choice of this representation for a given note, or for the notes
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in a given chord. Musicians generally prefer that written music adheres to
certain rules in the spelling of chords.

In order to explain the correct spelling of chords, we will for the moment
adopt the term spelled notes to refer to a note or note class as notated.
Spelled notes, then, differentiate between different notes spellings which are
enharmonically the same; thus A♯ is a different spelled note class from B♭.
Also, for any spelled note (class) we define its underlying unaltered note
(class) to be the class obtained by stripping away accidentals from the note,
in the ambient key. Thus, in the key of C major, A is the underlying unaltered
note class of A♯; in the key of B minor, C♯ is the underlying unaltered note
class of C♮. Obviously the underlying unaltered note, or note class, always
lies on a diatonic scale tone.

Correct spelling can now be explained in the following way. The third
of a chord should be spelled so that it’s underlying unaltered note class is
two scale tone classes above that of the root; the fifth of a chord should be
spelled so that it’s underlying unaltered note class is four scale tone classes
above that of the root; and the seventh of a chord should be spelled so that
it’s underlying unaltered note class is six scale tone classes above that of the
root.

As an example, if the root of a major chord is spelled as C♯, then its third
should be spelled as E♯, not F. Below are two examples of misspelled chords
followed by the same enharmonic chord with correct spelling. Note that in
the first example (D) the third is misspelled and in the second example (E♭7)
both fifth and seventh are misspelled.

G
D misspelled

¯¯¯
2¯ G

D

¯¯
4̄̄ G4

E♭7 misspelled

2 ¯4¯4 ¯
¯ G4

E♭7

2 ¯2¯2 ¯
¯

Correct spelling often necessitates the use of double flats, double sharps, and
non-diatonic notes which have diatonic enharmonic equivalents. Consider
these examples:



39

G44444
♯II7 in B major

¯5¯¯¯ I2222
♭III in A♭ major

2¯23̄̄
¯

For augmented and diminished seventh chords, whose roots cannot be
determined merely from the chords’ pitch classes, correct spelling will identify
the root. Rules of spelling, however, tend to be followed less rigorously for
these chords, as well as for diminished triads. Note, for example, that the
I dim chord in the example is misspelled. The first example below gives the
correct spelling of C07. The middle chord of the second example gives the
same enharmonic chord spelled as D♯07; however in some contexts (such as
the one that appears here) this chord might be viewed as a misspelling of
C07.

G
C07

¯
2¯2¯3 ¯ G

C7

ˇ ˇ2ˇ
ˇ

?

ˇ4ˇˇ
4ˇ

C7

ˇ ˇ ˇ
ˇ

In the following example the middle chord, because of context, would likely be
labeled as E aug, even though it is spelled as C aug (here the sharp applies
throughout, since there is no bar line) to allow the augmented fifth to be
written diatonically as C rather than B♯.

G
E7

ˇ4ˇˇ ˇ
?

ˇ ˇ ˇ ˇ
E7

ˇ ˇ ˇ ˇ

In some cases music gives a different name to an alternate spelling of
a chord. We will not delve much into this, but an example that comes to
mind is the augmented sixth chord, which is enharmonically equivalent to
the seventh chord but spells the seventh as an augmented sixth, as in the
first chord of the example below.
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ăIG22
22

˘˘
4˘˘
˘ ˘
˘4˘

We will not discuss the matter of when and why the chord might be written
as an augmented sixth rather than seventh chord except to say that if it
appears in a “dominant” role, that is, when it leads around the circle of
fifths (see below), it should be always spelled as a seventh chord.

Finally, it should be admitted that chords are sometimes intentionally
misspelled simply to make the voice leading more natural and/or readable
to the vocalist or instrumentalist.

Progressions. Musical “character” is created in part by the way various
chord types are organized and juxtaposed in real time. The procedure from
one chord to the next is called progression. A certain amount of musical
satisfaction is obtained merely from a pleasing or catchy sequence of pro-
gressions. Certain patterns are common, thus giving musical clichés that are
quite familiar to most listeners.

A classical example is a progression in which the root moves counter-
clockwise around the circle of fifths, depicted below.

I
V

II

VI

III

VII
♭V

♭II

♭VI

♭III

♭VII

IV

The Circle of Fifths

Note that as we proceed clockwise the progressions go up a fifth, or, equiv-
alently modulo octave, down a fourth; as we proceed counter-clockwise the
progressions are up a fourth, or down a fifth. (Note also that each chromatic
scale tone occupies one and only one clock position. We say more about this
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later.) The classical circle-of-fifths progression is one in which the the root
of a chord is a fourth above the root of the preceding chord. In other words
the root movement goes counter-clockwise, as in the sequence of major mode
progressions:

VI7 −→ II m −→ V7 −→ I

Often a melody suggests the chords which should underlie it by offering
a sequence of notes which lie mostly within a certain chord. Sometimes this
basic “implied harmony” can be artistically altered or enhanced. For example,
this melody, in F major,

G 2 4
4 ` ˇ (ˇ ˇ ˇ ` ˇ (ˇ ˇ ˇ ¯

is comfortably accommodated by the sequence I → V7 → I (or F → C7 → F),
each chord sustained or played in arpeggio for one measure. All the melody
notes lie within the respective chords except for the D in the second measure,
which doesn’t lie in C7. But observe that the following harmonizations also
work,

I −→ II m −→ III m

I −→ IV −→ V

I −→ ♭VII −→ I

I −→ ♭VII −→ V

each giving the passage a different personality.

Exercises

1. Identify these chords by root note and suffix (e.g., B m7 or E♭ aug):

(a) ăIG44
44

¯¯
¯¯

(b) ăIG 4¯¯¯¯¯
¯

(c) ăIG4
4

¯¯
¯¯¯

(d) ăIG22222
22222

¯¯
¯¯¯
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2. Identify these chords by root scale tone and suffix (e.g., V7 or ♯II m).
Assume the major mode in (a) and (b), the minor mode in (c), and the
Dorian mode in (d).

(a) ăIG22
22

¯¯
¯¯¯¯
¯

(b) ăIG ¯¯4¯
¯

(c) ăIG444
444

4̄̄̄
4̄̄̄

(d) ăIG2
2

¯¯
¯¯

3. Write these chords with correct spelling on the treble clef:

(a) Dm7 (b) E♭dim (c) A♭∅7 (d) F♯7 (e) GM7

4. Write these chords with correct spelling on the bass clef.

(a) E♭m7 (b) D dim (c) G♭ (d) C♯7 (e) B♭ aug

5. Write these chords with correct spelling, across the bass and treble
clefs, in the indicated (major) key signature:

(a) II7 in the key of D major

(b) IVm7 in the key of A♭major

(c) I aug in the key of F major

(d) V∅7 in the key of B major

(e) ♭VII in the Lydian key of E♭

6. Name the chord given by each of these sequence of semitones:

(a) 4,5 (b) 2,4,3 (c) 6,3,6 (d) 7,8,7 (e) 16,6,9,5,7

Name the chord given by each of these sequence of intervals:

(a) fifth, fourth, major third, tritone

(b) major third, minor sixth, major sixth

(c) fifth, octave, minor third, tritone

(d) step, fifth, major sixth
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(e) minor third, minor third, step

7. For each of the types of chords discussed in the text, list by Roman
numeral all the ways the chord can be created using only diatonic note
classes in the major mode.

8. Consider the chord obtained by taking the seventh chord and flatting
its fifth. Such a chord is sometimes labeled with the suffix 7−5. Show
that this chord does not have a discernable root. Write an an example
of such a chord and give all possible labelings of it.

9. In a given mode, the chord consisting of scale tones 1̂, 3̂, and 5̂ is called
the tonic triad. For each of the seven modes introduced in Chapter 1,
determine the chord type of its tonic triad.

10. For each of the seven modes, classify the chord consisting of scale tones
2̂, 4̂, 6̂ and 8̂ (=1̂).

11. Identify each chord in this minor mode (Aeolian) passage. Above the
staff label each chord by root note class with suffix (e.g., E♭7). Below
the staff, label each chord by root scale tone (e.g. ♭III7). Also, one of
the chords could be considered misspelled. Which chord is it?

ăIG ¯¯
¯¯

¯¯
¯4¯
¯¯
¯¯
¯ ¯
4¯¯

¯¯
4̄̄

12. Complete the following to a four-part harmonization of the given melody,
written in the major mode, using only whole notes, so that the melody
is the top part and the bottom note is always the root. The chords
should be the those indicated under the staff.
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ăIG22222
22222

I

¯ ¯
¯¯

II7

¯

V7

¯

I

¯

13. Give a plausible harmonization of this melody by providing, in the bass
clef, one whole note chord for each measure. Label each chord by root
scale tone (Roman numeral) and chord type (e.g., IIm7).

ăIG2
2

4
4

4
4 ` ˇ (ˇ ˇ ˇ `6ˇ (ˇ ˇ ˇ ˇ ˇ ˇ ˇ ¯

14. Analyze the basic harmony in the first 16 measures of Scott Joplin’s
Maple Leaf Rag. Each measure will have at most two chords. Label the
chords by root note class and chord type (e.g., G7). (Note: In a few
places the chords are incomplete.)

15. Analyze the basic harmony in the first five measures of Ludwig van
Beethoven’s Moonlight Sonata. Label the chords by root note class and
chord type (e.g., G7).



Chapter 4

Ratios and Musical Intervals

We like to think of an interval as the “distance” between two pitches. The
most basic interval is the octave. If one hears the pitches 440 Hz (A4) and 880
Hz, one recognizes the latter as being one octave above the former, hence 880
Hz is A5. The pitch 220 is one octave below A4, hence is A3. The difference
between the frequencies of A3 and A4 is 220, while the difference between
the frequencies of A4 and A5 is 440, yet the intervals are the same – one
octave. This reflects the fact that the octave corresponds to a factor of 2,
and that an interval should not be associated with the difference between
the two frequencies, but rather the ratio between the two frequencies.

The Equivalence Relation of Ratios. Consider the relation on the set
of ordered pairs from R+ (i.e., the set (R+)2 ) which declares two pairs (a, b)
and (a′, b′) to be related if the ratios of their coordinates are equal, that
is, if a

b
= a′

b′
, which is equivalent to saying a′b = ab′. One easily verifies

that this defines an equivalence relation on (R+)2. Note, for example, that
(2 : 3) = (4 : 6) = (1

2
: 3

4
). We denote the equvalence class of (a, b) ∈ (R+)2 by

(a : b), or sometimes just a : b , and we call it the ratio of a and b. Denoting
the set of equivalence classes by (R+ : R+), we see that the function

ϕ :
(
R+ : R+

)
→ R+ defined by ϕ((a : b)) =

a

b
(4.1)

is well-defined, and that it is one-to-one and onto.

The Ratio Associated to an Interval. Since we have identified the set R+

with the set of pitches, or frequencies, the equivalence relation defined above
applies to pairs of pitches (f2, f1), placing such a pair in an equivalence class
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f2 : f1, which is associated via ϕ to the number r = f2

f1
which we also call the

ratio of f2 to f1. This number r is a measurement of the interval from the
pitch f1 to the pitch f2. We will refer to both r and the corresponding class
f2 : f1 as the interval, or interval ratio, determined by the frequencies f1 and
f2. Thus each r ∈ R+ gives a unique interval. It is an enlightening exercise
to listen to the intervals determined by various ratios r, such as 3, 3/2,

√
2,

0.7, and even the transcendental numbers π ≈ 3.14159 and e ≈ 2.71828.

Orientation of Intervals. Intervals have an upward or downward orien-
tation. We say that the interval given by pitches (f2, f1) (which we read as
the interval from f1 to f2) is upward if f2 > f1 and downward if f2 < f1. In
the former case we have f2

f1
> 1; in the latter case f2

f1
< 1. Thus the upward

intervals are given by the real numbers x which are greater than 1, and the
downward intervals are given by the positive real numbers x which are less
than 1.

set of downward intervals = {x ∈ R | 0 < x < 1} = (0, 1)

set of upward intervals = {x ∈ R | 1 < x} = (0,∞)

The interval created when f1 = f2 will here be called the unison interval. It
is given by the ratio f : f (for any f ∈ R+), which corresponds via ϕ to the
number 1.

Each interval f2 : f1 has a unique opposite interval, given by the ratio
f1 : f2. It is the interval having the same “distance” in the opposite direction:
if f2 : f1 is upward then f1 : f2 is downward, and vice-versa. If r is the real
number ratio of an interval, then it’s opposite interval has ratio r−1.

If the orientation of an interval is not stated, it will be assumed that an
upward interval is meant. For example if we say “the interval of a fourth”
will be taken to mean “the upward interval of a fourth”.

Multiplicativity. Observe that intervals have the following multiplicative
property: If x1 represents the interval f2 : f1 and x2 the interval f3 : f2, then
x1x2 represents the interval f3 : f1. This is obvious, since x1x2 = f2

f1

f3

f2
= f3

f1
.

Thus the result of juxtaposing two intervals, i.e., following one interval by
another, is given by multiplying the two corresponding real numbers.

Multiplicative and Additive Measurements. The measurement of in-
tervals by ratio is called multiplicative, because of the property stated above.
The usual measurements of intervals, such as semitones, steps, or octaves, are
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called additive because when we juxtapose two intervals we think of adding
or subtracting. For example we say that 2 semitones plus 3 semitones equals
5 semitones; a fifth is a major third plus a minor third; a semitone is a major
sixth minus a minor sixth. We will show later how this more conventional
notion of interval relates to the multiplicative notion of an interval as a ratio.

Semitones. The principle of multiplicativity enables one to determine which
real number gives the interval of a semitone. Let us denote this number by
s. Since twelve iterations of this interval gives the octave, which has ratio 2,
we must have s12 = 2, which says (since s is positive)

s =
12
√

2 = 21/12 .

If we iterate this interval n times to get n semitones, the ratio will be
(21/12)

n
= 2n/12. It is natural to extend this conversion formula to an in-

terval measured in semitones x, for any x ∈ R+ :

The interval of x semitones has ratio 2x/12. (4.2)

This just follows from fact that (21/12)
n

= 2n/12.

Examples. The interval of a major third (4 semitones) has the ratio 24/12 =
21/3 = 3

√
2 ≈ 1.25992. The interval of downward a minor third (−3 semitones)

has ratio 2−3/12 = 2−1/4 = 1/ 4
√

2 ≈ 0.840896.

Frequencies of Keyboard Notes. If a note N has frequence f and an
interval has ratio r, the note which lies the interval r from N has frequency
rf . Given that A4 is tuned to 440 Hz, we can now use a calculator to obtain
the frequency of any other note on the keyboard.

For example, using the above calculation of the major third’s ratio as
21/3, we calculate in hertz the frequency f of C♯

4, which lies a major third
above A3.

I ¯4¯

Since A3 has frequency 220 Hz (being one octave below A4) we have

f = 220 · 21/3 ≈ 277.18 .
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Therefore C♯
4 should be tuned to 277.18 Hz.

Microtuning and Cents. We will see later that mathematical tuning in-
volves intervals which cannot be realized as integer multiples of semitones.
The term microtuning refers to systems of tuning which alter the frequencies
of notes in the equally tempered chromatic scale, or which add new notes to
that scale.

For this the semitone is divided into 100 equal intervals, the subdivision
being called a cent. Thus 1200 iterations of this interval gives an octave. The
interval of one cent is so small as to be imperceptible to most of us. Even
the interval of 10 cents is difficult to perceive. Therefore the measurement of
intervals in cents is fine enough to be quite satisfactory for microtuning.

Cents, like semitones and octaves, is an additive measurement of intervals.

Conversion of Cents to a Ratio. Letting c denote the ratio corresponding
to one cent, then by reasoning as we did with semitones, we have c1200 = 2,
i.e.,

c = 21/1200 ≈ 1.0005778

For any number x (not necessarily an integer), the interval of x cents has the
ratio r given by

r = cx =
(
21/1200

)x
= 2x/1200 .

Thus r = 2x/1200 gives the conversion of x cents to a ratio r.

The interval of x cents has ratio 2x/1200. (4.3)

This relationship allows us to convert cents to a ratio using a scientific cal-
culator. For example, the interval of 17 cents corresponds to the number
217/1200 ≈ 1.009868.

Arbitrary Chromatic Units. Suppose n is a positive integer and we wish
to divide the octave into n equal subintervals, which we will call n-chromatic
units. The same reasoning that led to formulas 4.2 and 5.1 tells us that:

The interval of x n-chromatic units has ratio 2x/n. (4.4)
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Octave Equivalence of Interval Ratios. By definition, two intervals are
equivalent modulo octave if they differ by an interval of n octaves, for some
n ∈ Z. The difference of two intervals is the result of juxtaposing the first
with the opposite of the second. If the intervals are given by ratios r1 and r2,
this difference is given by the interval ratio r1r

−1
2 . The interval of n octaves

has ratio 2n. Thus we have:

Proposition Two interval ratios r1 and r2 are equivalent modulo octave if
and only if there exists n ∈ Z such that r1r

−1
2 = 2n.

For example, the interval ratios 41 and 328 are equivalent modulo octave,
since 41

328
= 1

8
= 2−3.

Conversion to Additive Measurements. We eventually will need to be
able to convert the ratio measurement of a musical interval to an additive
measurement such as cents or semitones. Suppose we are given a ratio r to
convert to cents. In this situation we must solve for x in the equation r =
2x/1200. This requires taking a logarithm, a topic which will be reviewed and
developed in the next section. The following observation provides additional
motivation for evoking logarithms. If we plot pitches on an axis according to
their frequency, we see that musical intervals are not represented as distance
along the axis. For example, the pitches A2, A3, A4, and A5 appear as:

0 110 220 440 880

A2 A3 A4 A5

The distances on the frequency axis between An, An+1 for various integers
n are different though the musical intervals are all the same – one octave.
This is somewhat unsatisfying since we are used to thinking of two pairs of
pitches representing the same interval as being the same “distance” apart,
which is roughly the situation on a musical staff, where the vertical “distance”
between each successive A, notated on the same clef, appears to be the same:

G
¯¯
¯¯

A2

A3

A4

A5
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However if we plot the pitches according to the logarithms of their frequen-
cies, we get a more satisfying result. The logarithm will also enable us to
measure in semitones an interval expressed as a ratio r or given by a ratio of
two frequencies f1 : f2.

Vibration of Strings. It was known by the Ancient Greeks that the vi-
brating frequency of a string is inversely proportional to the length of the
string, provided the tension on the string and the weight of the string per
unit of length remain the same. This says the relationship between length L
and frequency F can be expressed as

F =
k

L
(4.5)

for some k ∈ R+.
Some stringed instruments, such as guitars, have frets so that the length

of the string, and hence the pitch it sounds when strummed, can be altered
in performance. This is effected with a greater degree of freedom in stringed
instruments which do not have a fret, such as violins, where the instrumental-
ist’s finger holds the sting tightly against the fingerboard of the instrument,
thus changing the length of the vibrating portion of the string.

Let us consider how the fret (or, equivalently, the position of the instru-
mentalist’s finger on an unfretted instrument) can be positioned to effect
a given change of frequency. Suppose the string has length L and its fre-
quency is F . Visualize the string stretching horizontally, and suppose a fret
is positioned at distance L′ from, say, the right end of the string.

0 L
fret

L′
= qL

We want to calculate the interval ratio F ′ : F , where F ′ is the frequency of
the segment of string to the right of the fret. This segment has length L′, so
by 4.5 we have

F ′ : F =

(
k

L′ :
k

L

)

=

(
1

L′ :
1

L

)

,

which corresponds, via the function ϕ defined in 4.1 to the number

ϕ(F ′ : F ) =
1
L′

1
L

=
L

L′ .
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If L′ is expressed in terms of its proportion to L, i.e., L′ = qL, the fraction
becomes

L

qL
=

1

q
.

Putting this together, we have

F ′

F
=

1

q
(4.6)

So suppose we want to place a fret so as to move the pitch upward by a
specified ratio r ≥ 1. This means r = F ′

F
= 1

q
, by 4.6, hence

q = r−1 (4.7)

Example. Suppose we want to place a fret so as to move the pitch upward
a major third above F . Since the major third has ratio r = 21/3, we have

q =
(
21/3

)−1
= 2−1/3 ≈ 0.7937. The position of the fret is (0.7937)L, which

is close to (0.8)L = 4
5
L.

Exercises

1. Express each of these intervals as as elements of R+ three ways: (1) as
a radical or the reciprical of a radical, (2) as a power of 2, and (3) by
a decimal approximation with 2 digits to the right of the decimal:

(a) up 32 cents

(b) down 750 cents

(c) up a minor third

(d) the interval from C3 to F♯
1

2. Assuming A4 is tuned to 440 Hz, find the frequencies for all the notes
of the chromatic scale from C4 to C5. Plot these points on a number
line, noting their failure to be equidistant.

3. Suppose middle C is tuned as 256 Hz. (Note: This is not standard
practice.) Find the frequencies for:

(a) A4 (b) D♯
2 (c) C3 (d) F♯

1
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4. Graph the function f(x) = 2x/12. Explain the non-equidistance of the
points plotted in Exercise 1 by observing the shape of this graph.

5. For each of these chords, voiced within an octave with the root on the
bottom, give the pitch of each note in the chord:

(a) major triad with root C3

(b) minor triad with root G♯
4

(c) minor seventh chord with root A5

(d) diminished triad with root B♭
4

6. Suppose a string on a banjo has length 50 cm. Indicate positions of the
12 frets which will allow the string to play one octave of the ascending
chromatic scale. Note the non-equidistance of adjacent frets.

7. On the banjo string described above, indicate positions of the frets
which will allow the string to play one octave of the ascending 5-
chromatic scale.

8. A string on a stringed instrument has length 100 cm. Indicate the
positions of the single fret which will allow the string to play the note
(a) a keyboard major third above the original pitch, and (b) a ratio
5/4 above the original pitch. (Note the closeness of these two positions,
which relates to the discussion of Chapter 12.)

9. Determine whether each pair of interval ratios are are equivalent mod-
ulo octave.

(a) 5, 20 (b) 14, 7
2

(c) 2.3, 9.2 (d) 1.04, 0.13 (e) π, 3π
2



Chapter 5

Logarithms and Musical
Intervals

The logarithm allows us to convert ratios into cents or semitones, which are
the most natural representations of intervals. We will review some basic facts.
In this discussion, b will be a positive real number 6= 1 which will serve as
the base of the logarithm.

Exponents. If n is a positive integer, then bn is the n-fold product b · b · · · b,
b−n = 1/bn, and b1/n = n

√
b. These facts, together with the the rule of expo-

nents
bst = (bs)t ,

give meaning to bx for all rational numbers x. For example, b−2/3 can be
calculated as

b(−2)·( 1

3
) = (b−2)

1

3 =

(
1

b2

) 1

3

=
3

√

1

b2

Exponential Functions. The calculus concept of limit provides a definition
bx for all real numbers x in such a way that f(x) = bx is a continuous function.
(The concept of continuity will be discussed in Chapter 10.) Its domain is
the set of real numbers R and, (since b 6= 1) its range is the set of positive
real numbers R+.

f : R → R+

For b > 1 the function is increasing, hence it gives a one-to-one correspon-
dence between the sets R and R+. The graph of f(x) = bx is:
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y = bx

x

y

The number b is called the base of the exponential function. It will always be
a positive real number, 6= 1, and we generally take it to be > 1.

Logarithmic Functions. Since the function f(x) is one-to-one and onto, it
has an inverse function. The function g(x) = logb(x) is defined as the inverse
function of f(x) = bx, that is to say

f(g(x)) = x, which says blogb x = x

and

g(f(x)) = x, which says logb(b
x) = x .

Thus the statement logb x = y means exactly the same as by = x. The domain
of g(x) (which is the range of f(x)) is R+; the range of g(x) (which is the
domain of f(x)) is R.

g : R+ → R

The graph of g(x) = logb x is obtained by flipping the graph of f(x) = bx

around the line y = x. Again assuming b ≥ 1, we see that g(x) = logb x is an
increasing, hence one-to-one, function whose graph is:

y = logb x

x

y

The number b is called the base of the logarithm. Remember that it is always
positive, 6= 1, and we usually take it to be > 1.
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If we recognize a number x as a power of b then we can say immediately
what logb x is. For example, log3 9 = 2 (since 32 = 9) and logb

√
b = 1

2
(since

b
1

2 =
√

b).

Properties of Logarithms. In a certain sense, logarithms transform mul-
tiplication to addition; this is why they are useful in understanding and
measuring intervals. The basic properties which underlie this are:

logb xy = logb x + logb y (L1)

logb

x

y
= logb x − logb y (L2)

logb(x
p) = p logb x (L3)

for any real numbers x, y > 0 and any real number p. Property (L1) derives
from the law of exponents bs+t = bsbt as follows: Let s = logb x and t = logb y.
Then

bs+t = bsbt = blogb xblogb y = xy ,

according to the above principle. But bs+t = xy means s + t = logb xy,
completing the proof.

Logarithmic Scale for Pitch. Property (L2) assures us a pleasing outcome
if we plot pitches on an axis corresponding to the logarithm of their frequency:
Pairs of pitches which have the same interval will lie the same distance apart
on the axis. For suppose pitches (i.e., frequencies) x and y create the same
interval as the two x′ and y′. This means the ratio of the frequencies is the
same, i.e., x/y = x′/y′. According to (L2), then, we have logb x − logb y =
logb x′− logb y′, which says the distance between logb x and logb y is the same
as the distance between logb x′ and logb y′. Recall that when we plot A2, A3,
A4, and A5 according to their frequencies we get:

0 110 220 440 880

A2 A3 A4 A5

If we instead plot these notes according to the logarithm of their frequencies
we find that they are equally spaced. For example, choosing b = 10, we get:
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log10 110 log10 220 log10 440 log10 880

≈ 2.041 ≈ 2.342 ≈ 2.643 ≈ 2.944

A2 A3 A4 A5

Different Bases. We will need to compare logarithms of different bases. If
a is another positive number 6= 1, we have the following relationship between
logb x and loga x :

logb x =
loga x

loga b
(L4)

This is established as follows. Let u = loga x, v = logb x, and w = loga b. Then
au = x, bv = x, and aw = b. The last two equations give us x = (aw)v = awv

This establishes that wv = loga x = u from which (L4) is immediate.
The result is that the functions logb x and loga x are proportional as func-

tions, with constant of proportionality 1/ loga b. For example, if we compare
the graphs of g(x) = log6 x and log3 x we see that the latter is obtained by
“stretching” the former vertically by a factor of log3 6 ≈ 1.631.

Calculating Using the Natural Logarithm. Scientists often prefer use
the natural logarithm, which has as its base the transcendental number e, ap-
proximated by 2.71828. This number and its logarithm are highly significant
in mathematics for reasons that will not be explained here. It is common to
denote loge x by ln x. Any calculator that has ln as a supplied function can
be used to evaluate any logarithm, using (L4). Setting a = e the formula
reads:

logb x =
ln x

ln b
(L5)

Similarly, one can calculate any logarithm using log10, which is supplied
with many calculators.

Converting Intervals from Multiplicative to Additive Measurement.
Suppose we want the octave interval to appear as the distance 1 on the log-
arithmic axis. If two frequencies we x and y are an octave apart, x being the
greater frequency, then we know x/y = 2. We need, then, 1 = logb x−logb y =
logb(x/y) = logb 2. But logb 2 = 1 means b1 = 2, i.e., b = 2. Therefore 2 is
our desired base.

Returning to a problem posed in the last section, suppose we are given a
musical interval represented as a ratio r and we wish to convert it to one of
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the standard measurements for intervals such as octaves, steps, semitones, or
cents. We have noted that if x is the measurement of the interval in cents,
then r = 2x/1200. Applying the function log2 to both sides of this equation
yields log2 r = log2(2

x/1200) = x/1200, i.e., x = 1200 log2 r. Thus we have:

The interval ratio r is measured in cents by 1200 log2 r. (5.1)

Similar reasoning shows:

The interval ratio r is measured in semitones by 12 log2 r. (5.2)

and:

The interval ratio r is measured in octaves by log2 r. (5.3)

Using (L4) we can make these conversions using any base. For example, if our
calculator only provides the natural logarithm, we appeal to (L5) to make
the conversion by evaluating x = 1200 log2 r as

x = 1200

(
ln r

ln 2

)

.

Note that if r is is less than 1, then ln r < 0, hence measurement x in cents is
negative. This is logical, for if r is the interval from frequency f1 to frequency
f2 we have r = f2/f1 < 1. This says f2 is less than f1, so that the interval in
cents is given by a negative number.

We note that the conversions in 5.1 and 5.2 can be expressed as logb r for
an appropriate base b. For example, if we wish to express the ratio r as x
semitones, we have

r = 2
x
12 =

(

2
1

12

)x

=
(

12
√

2
)x

.

Applying logb with b = 12
√

2 we get

x = log 12
√

2 r .

Example. Let us measure in cents the interval given by the ratio 3/2 and
find the chromatic interval which best approximates this interval. If x is the
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measurement in cents, we have

x = 1200

(
ln(3/2)

ln 2

)

= 1200

(
ln 3 − ln 2

ln 2

)

by (L2)

= 1200

(
ln 3

ln 2
− 1

)

≈ 701.955 using a calculator.

Thus the ratio 3/2 is very close to 702 cents. A fifth is 700 cents (= 7
semitones), so our interval is 2 cents greater than a fifth. The fifth is the
chromatic interval that gives the best approximation.

Exercises

1. Evaluate without a calculator by writing the argument of log as a power
of the base. Write down each step of the simplification, e.g., log3 3

√
3 =

log3 33/2 = 3
2
log3 3 = 3

2
:

(a) log10(0.01) (b) log2 16 (c) log5
3
√

25 (d) logc
n
√

cℓ

2. Express as a single logarithm without coefficient, i.e., in the form logb c
(do not evaluate with a calculator):

(e) log3 11 + log3 17 (f) log9 5 − 2 log9 2

(g) log2 13 + log4 21 (h) 2 logc x2 − 1
2
log√

c x

3. Sketch the graphs of:

(a) f(x) = 10x (b) g(x) = log10 x (c) r(x) = 2x (d) s(x) = log2 x

Determine which pairs of these functions are inverse to each other, and
which pairs differ by a horizontal or vertical stretch/compression. In
the latter case, identify the stretch factor, justifying your answer.

4. For a base b with 0 < b < 1, sketch the graph of f(x) = bx and
g(x) = logb x and explain what happens if we plot pitches according to
the logarithm of their frequency using the base b.
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5. Prove these properties of logarithms

logb

x

y
= logb x − logb y

logb(x
p) = p logb x

using properties of exponents.

6. Suppose n ∈ Z+ and we want the interval of an octave to correspond to
a distance of n on the logarithmic axis. What base should we choose?
Justify your answer.

7. Convert to semitones the intervals given by the following ratios: (Round
off to 2 digits to the right of the decimal.)

(a) 3 (b) 0.8 (c)
4

3
(d)

3
√

2 (e) e

8. Convert to cents the intervals given by the following ratios, rounding
off to the nearest whole cent:

(a) 1.25 (b) 1.1 (c)
7

4
(d)

2

3
(e) π

9. Write on the staff the note which best approximates the frequency
having the given interval ratio r from the given note:

(a) ăIG 22
22

r = 3

¯
(b) ăIG 4

4

r = 2
5

¯
(c) ăIG 222

222

r = 2.3

¯
(d) ăIG

r = π−1

¯

10. Express the following interval ratios in terms of n-chromatic units, for
the given n. Round off to 2 digits to the right of the decimal.

(a) ratio 5
2
; n = 19

(b) ratio 3 ; n = 8
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(c) ratio 0.85 ; n = 13

(d) ratio 2π ; n = 4 (i.e., minor thirds)

11. For the values n = 11, 17, 21, 30, find the n-chromatic scale’s best ap-
proximation of the interval ratio 3/2, and calculate the error in cents.
Which of these values of n gives the best approximation, and is that
approximation as good as that of the 12-chromatic scale?



Chapter 6

Chromatic Scales

As we have seen, the interval of an octave given by a two-to-one ratio of
frequencies. Two pitches an octave apart, played simultaneously, present the
ear with a two-against-one pattern that the brain easily recognizes as a pleas-
ing consonance. Therefore it is easy to understand what led Western music,
as well other musical traditions, to embrace the octave and to incorporate
octave identification into its notation.

What is not so apparent is what led to the subdivision of the octave into
twelve equal intervals, a custom which is less universal, and which only came
into acceptance within the last 200 years. It is quite natural to wonder if the
subdivision of the octave into 12 equal intervals is purely arbitrary, or if some
natural phenomenon brought Western music toward this practice. This will
be discussed later.

Meanwhile, we can explore the sound of a chromatic scales which equally
divide the octave differently. For example we might want to design and listen
to a chromatic scale which divides the octave into 19, 10, or 5 equal intervals.

Non-standard chromatic scales. If we obtain a chromatic unit by divid-
ing the octave into n equal intervals, where n is a positive integer, this unit
measured as a ratio is 2

1

n , and measured in cents is 1200/n. We will refer to
the resulting chromatic scale as the n-chromatic scale, and the smallest chro-
matic interval (= 1

n
octaves) as the n-chromatic unit. Thus the 12-chromatic

unit is the usual semitone. The n-chromatic unit is measured in cents by
1200/n and has interval ratio n

√
2.

Detuning. Many synthesizers allow notes of the chromatic scale to be indi-
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vidually detuned in cents, and this feature will allow one to experience the
sound of such non-standard chromatic scales where n < 12.

If we chose n = 4 the smallest interval would be 1200/4 = 300 cents,
which is the keyboard’s minor third. So the scale can be played on a keyboard
without detuning. For example, in G we would play G, B♭, D♭, and E. For
n = 3 the smallest chromatic interval would be the major third, and for
n = 6 it would be the (whole) step.

If we chose n = 5, some detuning is required. We could detune the notes
A,B,C,D so that the five keys G,A,B,C,D play the five-note chromatic scale.
The interval in cents would be 1200/5 = 240. We need the interval between
G and A to be 240. The default interval is one step, or 200 cents, so A
should be detuned upward by 40 cents. B needs to be 240 cents above the
detuned A, so B should be detuned upward by 80 cents. C, which be default
is only 100 cents above the default B, will need to be detuned upward by
220 cents. Detuning D upward by 260 cents completes the task. With this
accomplished, and using only these five keys, we can listen to the sound of
the five-note chromatic scale and experiment with melody and harmony in
this tuning environment.

Generating intervals. We now give a brief preview of a topic that will be
reintroduced and developed in Chapters 7 and 8. For a fixed positive integer
n, the generating intervals are those modular n-chromatic intervals I for
which all modular n-chromatic intervals can be expressed as iterations of I.
We will see later that the generating intervals correspond to those [m] ∈ Zn

which are generators for the group Zn, which, it will be shown, is equivalent
to saying gcd(m, n) = 1. This denotes the greatest common divisor of m and
n, to be discussed in Chapter 8. It is defined as the largest possible integer
which divides both m and n. Two numbers m and n are called relatively
prime (to each other) if gcd(m, n) = 1. In number theory, the Euler phi
function φ is defined as the function from φ : Z+ → Z+ which takes n to
the number of integers m < n in Z+ such that gcd(m, n) = 1 Thus φ(n)
also counts the generating intervals in the equally tempered n-scale. For any
such I the “circle” based on I (the meaning of this will become clear in the
example below) contains all intervals in the chromatic scale.

Example. Consider the case n = 14. The numbers 1, 3, 5, 9, 11, and 13 are
the positive integers < 14 which are relatively prime to 14, so φ(14) = 6.
These six numbers, modulo 14, give the six generating intervals in the 14-
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chromatic scale. For the interval I corresponding to [5], its circle of intervals
is:

[0] [5]
[10]

[1]

[6]

[11]
[2][7][12]

[3]

[8]

[13]

[4]
[9]

Approximating Standard Keyboard Intervals. Let us determine how
closely some of the standard intervals of the standard 12-chromatic scale’s
intervals can be approximated using the 14-chromatic scale. Clearly the tri-
tone is precisely 7 chromatic units in the 14-scale, being one-half of an octave.
More generally, ℓ semitones can be calculated by:

ℓ semitones = ℓ · 14 14-chromatic units

12 semitones
= 7

6
ℓ 14-chromatic units.

For example, the keyboard’s interval of a fourth, being 5 semitones, is (7
6
)·5 =

35
6
≈ 5.833 14-chromatic units. Hence it is best approximated in the 14-scale

by 6 units. Now, since the chronmatic unit is (1/14)th of an octave, it is
measured in cents by 1200/14 ≈ 85.714. Therefore 6 units is 6 · (1200/14) ≈
514.29 cents, which is 14.29 cents greater than the fourth.

To calculate a ratio r in 14-chromatic units, we reason as follows: A
14-chromatic unit has ratio 2

1

14 = 14
√

2. If x is the measurement of r in 14-
chromatic units, then r = ( 14

√
2)x = 2

x
14 . Solving for x using the logarithm,

we have

x = 14 log2 r = 14
ln r

ln 2
.

For example, the ratio 0.75 is 14 ln(0.75)/ ln 2 ≈ −5.81 chromatic units (i.e.,
5.81 units downward).

Twelve-Tone Music. In the 1920s Arnold Schoenberg (1874-1951) began
developing the twelve-tone technique of composition, a method that is heavily
based on the subdivision of the octave into 12 equal units. It was continued
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by Anton Webern (1883-1945), Alban Berg (1885-1935), and Milton Babbitt
(b.1916). Here consonance is largely abandoned in favor of combinatorics.
This represents is a type of serial music, which constructs music from sets
of note classes. The reader is referred to Chapter 2 of [3], which gives an
excellent exposition on methods of twelve-tone composing, and from which
the twelve-tone examples which follow are taken.

A twelve-tone composition is based on a row chart, which is a 12 by 12
array having the following properties: Each entry is one of 12 the note classes,
modulo octave. Each row and each column contains each note class precisely
once. All entries are be obtained from the top row, called the original row, or
prime row, as follows. The leftmost column is the inversion of the top row,
that is, the interval (modulo octave) from the top left note class to the nth

entry in the left column is the opposite of the interval from the top left note
class to the nth entry in the top row. The subsequent rows are transpositions
of the top row; they are are filled in by starting with the left entry that has
been provided above and transposing the first row, so the the intervals from
entry 1 to entry m in the nth row is the same as the interval from entry 1 to
entry m in the first row.

When we are finished, the columns will be transpositions of the inversion
of the original row, or, equivalently, inversions of the various transpositions
of the original row. The reason for this outcome is fairly obvious, but we will
see precisely why this happens when we make the connection with modular
arithmetic in the next chapter.

The number of possible original rows is

12 ! = 12 · 11 · 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 ,

a number huge enough to make the possibilities seemingly endless.
As an example, consider this sequence of 12 notes classes:

G
E

ˇ
G

ˇ
F♯

4̌
A

ˇ
G♯

4ˇ
C

ˇ
F

ˇ
D

ˇ
D♯

4̌
C♯

4ˇ
B

ˇ
B♭

2ˇ

The spelling of notes in twelve-tone music often consists of a mixture of
sharps and flats in no apparent pattern. Observe in the above that the sharp
is used four times and the flat one time. Since each of the 12 note classes
appears precisely once, this sequence qualifies as an original (top) row, which
generates the row chart below.
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E G F♯ A G♯ C F D D♯ C♯ B B♭

C♯ E D♯ F♯ F A D B C B♭ G♯ G

D F E G F♯
B♭ D♯ C C♯ B A G♯

B D C♯ E D♯ G C A B♭ G♯ F♯ F

C D♯ D F E G♯ C♯
B♭ B A G F♯

G♯ B B♭ C♯ C E A F♯ G F D♯ D

D♯ F♯ F G♯ G B E C♯ D C B♭ A

F♯ A G♯ B B♭ D G E F D♯ C♯ C

F G♯ G B♭ A C♯ F♯ D♯ E D C B

G B♭ A C B D♯ G♯ F F♯ E D C♯

A C B D C♯ F B♭ G G♯ F♯ E D♯

B♭ C♯ C D♯ D F♯ B G♯ A G F E

The goal of twelve-tone composing is to create a musical composition
which uses the sequences of note classes found in the rows and/or columns,
or by taking their retrogrades, which reverse the order of the sequences. The
retrogrades are obtained by reading the rows from right to left or the columns
from bottom to top.

This example, from [3], is based on the row chart above.

ł
I

G

4
4

4
4

ˇ`

ˇ`2ˇ`

-ˇ

(ˇ6 (ˇ

4ˇ

6 ˇ4ˇ

ˇ
6ˇ4ˇ

4ˇ

2 ˇ6ˇ

łł
ˇ

ˇ
łł̌

6ˇ
4ˇˇ

–2222222–3

ˇ
–ffiffiffiffiffiffiffi–3

ˇ4ˇ

4ˇ

2ˇ6ˇ

4ˇ

2 ˇ4ˇ

˘

˘ ˘

2˘

4˘˘

Note that the sequence of notes in the bass clef is the original row,
the top line in the treble clef is the retrograde of the original row, and the
bottom line in the treble clef is the second column of the row chart, which is a
transposition of the inversion. The sequences from the row chart are applied
horizontally in the music, often producing the clashing effect of dissonant
chords.
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Since there is little feeling of tonal center, twelve-tone music is often
written in the key of C. The spelling may be different from what appears in
the row chart (Observe the A♭, rather then G♯, in the above example.), and
they may change during the compsition.

Sometimes the notes from a sequence are assembled in vertical fashion.
Consider the following original row.

G
C

ˇ
A♭

2ˇ
D

ˇ
F

ˇ
A

6ˇ
C♯

4ˇ
E

ˇ
E♭

2ˇ
B♭

2̌
B

6ˇ
G

ˇ
F♯

4ˇ
The following example, again from [3], uses this row by using groups of note
classes vertically.

č
I
G

6
8

6
8

?

ˇ`

ˇ2ˇ ?

ˇ`

6ˇ4 ˇ
2ˇ
ŔŔ
6ˇ ?

2ˇ`

ˇ4ˇ6 ˇ
-ˇ

-ˇ
2ˇ
´ ˇ
´ ˇ6ˇ
4ˇ ăă
ăă̌

6ˇ2ˇ

2 (ˇ ˇ
4-ˇ
ˇ
7 -ˇ
´ ˇ
2ˇ`
6ˇˇ

Exercises

1. Which interval in the given n-chromatic scale best approximates the
given keyboard interval? Express the interval in n-chromatic units.

(a) 19-scale, major third (b) 48-scale, tritone

(c) 37-scale, step (d) 7-scale, down a major sixth

2. Express the following interval ratios in terms of n-chromatic units, for
the given n. Round off to 2 digits to the right of the decimal.

(a) ratio 5
2
; n = 19

(b) ratio 3 ; n = 8

(c) ratio 0.85 ; n = 13

(d) ratio 2π ; n = 4 (i.e., the chromatic scale of minor thirds)
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3. Identify these chords by root note with suffix (e.g., B m7) and root
scale note with suffix (e.g., V7). Indicate the chromatic n-scale’s best
approximation of the chord by giving, for each note in the chord, it’s
interval in (whole) n-chromatic units from the bottom note.

(a) ăIG 4
4

n = 17

¯¯
¯¯

(b) ăIG 222
222

n = 21

¯¯¯
¯
¯¯

(c) ăIG 22
22

n = 9

4̄̄
¯¯

(d) ăIG 44444
44444

n = 4

¯¯6¯
6¯¯ ¯

4. Create a twelve-tone row chart having this sequence as its original row:

G ˇ ˇ 4ˇ 6ˇ 4ˇ ˇ ˇ ˇ 4ˇ ˇ 4ˇ 4̌
Write a short composition (say, ≤ 3 bars) which uses only the retrograde
of original row’s inversion (i.e., the left column of the chart read from
bottom to top), incorporating some harmonic material.
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Chapter 7

Octave Identification and
Modular Arithmetic

Octave identification. As we pointed out before, musical notation often
implicitly equates notes which differ by an interval of m octaves, where m
is an integer. In this scenario, the chromatic scale contains all the notes of
standard musical notation, of which there are twelve. Starting from C, we
can number them 0 through 11 as follows:

(0) C

(1) C♯ = D♭

(2) D

(3) D♯ = E♭

(4) E

(5) F

(6) F♯ = G♭

(7) G

(8) G♯ = A♭

(9) A

69
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(10) A♯ = B♭

(11) B

(Of course, there are other enharmonic representations of the note classes
listed above, such as F = E♯ and A = B♭♭.)

Similarly, we identify intervals which differ by m octaves, for some integer
m. From this perspective, going up an octave is the same as the identity
interval. Hence the interval of a fourth followed by the interval of a fifth
yields the unison interval. Likewise going up two fifths is the same as going
up one step. In this way intervals created between note in the chromatic
scale (i.e., those which can be measured as whole multiples of a semitone)
are parameterized by the modular group Z12 and iterating intervals amounts
to adding or subtracting in this algebraic system. We will now investigate
this phenomenon.

Variations On The Well-Ordering Principle. We will shortly give a
proof which will appeal to the Well-Ordering Principle, which we take to be
an axiom. We state four different formulations of that principle, which are
easily seen to be equivalent. The first is precisely as it was stated in Chapter
1. In the second formulation Z− denotes the set of strictly negative integers.
A real number y is called a lower bound for a set of numbers T if y ≤ t for
all t ∈ T . The definition of upper bound is analogous.

WOP.1 Any non-empty subset of Z+ has a smallest element.

WOP.2 Any non-empty subset of Z− has a largest element.

WOP.3 Any non-empty subset of Z which has a lower bound has a smallest
element.

WOP.4 Any non-empty subset of Z which has an upper bound has a largest
element.

Generalized Division Algorithm. We now state a more general version
of the Division Algorithm than the one presented in Chapter 1. Note the
generality is that we allow the “dividend” x to be any real number rather
than an integer1.

1Actually, you can see from the proof that the “divisor” m in the algorithm can be any
element of R+, not just a positive integer.



71

Generalized Division Algorithm Given m ∈ Z+ and x ∈ R there exist
q ∈ Z and r ∈ R with

0 ≤ r < m (1)

such that
x = qm + r . (2)

The elements q ∈ Z and r ∈ R are uniquely determined by (1) and (2).

Proof. Consider the set

S = {ℓ ∈ Z | ℓm ≤ x} ⊂ Z .

The condition ℓm ≤ x is equivalent to ℓ ≤ x
m

(since m is positive), so we see
that x/m is an upper bound for S. By the Well-Ordering Principle (WOP 4
above), S has a largest element q. We must have q+1 /∈ S by the maximality
of q and hence we have

qm ≤ x < (q + 1)m = qm + m . (3)

Setting r = x − qm, we clearly have x = qm + r, and subtracting qm from
(3), gives 0 ≤ r < m as desired.

As for the uniqueness of q and r, suppose we have q′ ∈ Z, r′ ∈ R such
that x = q′m + r′ and 0 ≤ r′ < m. Note that q′m = x − r′ ≤ x so q′ ∈ S.
Since r′ < m we have x = q′m + r′ < q′m + m = (q′ + 1)m. The inequality
(q′ +1)m > x shows that q′ + 1 /∈ S, nor is any larger integer. Therefore q′ is
the largest element of S, hence q′ = q. We now have qm + r′ = qm + r since
both are equal to x. Subtracting qm yields r′ = r.

Modular Equivalence on the Real Numbers. Let m be a fixed positive
integer. We declare two real numbers x and y to be equivalent if k − ℓ is
a multiple of m in Z, i.e., there exists q ∈ Z such that x − y = qm, or
equivalently x = y + qm. This relationship is denoted by x ∼ y. Note that
this depends on the choice of m.

We leave as an exercise the proof that ∼ defines an equivalence relation
on the set R, hence it partitions R into equivalence classes. For x ∈ R let us
denote by x̄ the equivalence class of x. Thus, if m = 8 we have 13 = 53 = −11
and 6.5 = −1.5.

Let us denote the set of equivalence classes by R/ ∼. The function which
associates to x ∈ R its equivalence class x̄ ∈ R/ ∼ can be seen as the function
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that wraps the number line around the circle of circumference m in such a
way that distance is preserved as arc length. We often do this so that the
origin x = 0 goes to the point at the top of the circle. This is depicted below
for the case m = 8.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7
8

-7

-6

-5
-4

-3

-2

-1

Thus R/ ∼ is parameterized by the circle in the same way R is parameterized
by the line.

The Generalized Division Algorithm asserts that for each x ∈ R, there is
precisely one equivalence class representative r ∈ x̄ such that 0 ≤ r < m. It
is the number r for which x = qm + r in the algorithm. This is reflected in
the fact that for any point p on the circle there is precisely one point in the
interval [0, m) which wraps onto p.

Modular Equivalence on the Integers. Note that if x ∼ y and if x ∈ Z

then y ∈ Z as well. Therefore ∼ restricts to an equivalence relation on Z as
well. We denote by Zm the set of equivalence classes. Elements of Zm are
called modular integers. For k, ℓ ∈ Z we express the condition k ∼ ℓ as

k ∼= ℓ mod m .

For k ∈ Z, we write [k] for the equivalence class containing k. Note that the
symbol [ ] does not reference m, so again m must always be established. Bear
in mind that [k] = [ℓ] if and only if m | k − ℓ in Z. As an example, note that
5 ≡ 19 mod 7, and hence [5] = [19] in Z7.

The set Zm is a subset of R/ ∼, and it can be seen as the image of Z by
the wrapping function described above. If we place m equally spaced points
around the circle, these points will be this image; they correspond to the
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classes [0], [1], [2], . . . , [m − 1], which is all of Zm. Hence elements of Zm can
be seen as “clock positions” on the “m-hour clock”. This is depicted below,
again for m = 8.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

We now introduce some concepts from abstract algebra which will be
useful in this discussion.

Monoid. A monoid is a set M with an associative law of composition that
has an identity element. By “law of composition” we mean a rule which
assigns to each ordered pair of elements (x, y) ∈ M2 an element z of M . This
operation is often denoted by choosing some symbol, such as ·, and writing
x · y = z. The property of associativity and the existence of an identity
element are defined as follows:

(1) Associativity: For any x, y, z ∈ M we have (x · y) · z = x · (y · z).

(2) Identity: There exists an element e ∈ M , called the identity element,
having the property that for all x ∈ M , x · e = e · x = x.

Note that associative property allows us to drop parenthesies without
ambiguity: (x · y) · z = x · (y · z) can be written as x · y · z.

We claim that the identity element e is the unique element of M having
its defining property, justifying our use of the article “the”. For if e′ is another
identity element, then e = e · e′ = e′.

Examples. Here are some examples of monoids. We leave it as an exercise
to verify most the details.

(a) The set R under the operation · (ordinary multiplication).

(b) The set Z together with the operation + (addition). The identity ele-
ment is 0.



74 CHAPTER 7. OCTAVE IDENTIFICATION

(c) Let S be a set and let F(S) be the set of functions f : S → S. Take
the law of composition to be the usual composition of functions: For
f, g ∈ {(S), f ◦ g is the function defined by (f ◦ g)(s) = f(g(s)) for all
s ∈ S. The identity element is the “identity function” idS defined by
idS(s) = s for all s ∈ S. A special case is F(R), the monoid of functions
from R to R.

(d) The set Zm, for a given m ∈ Z+. The law of composition will be denoted
+ (we’ll call it addition), and defined by

[k] + [ℓ] = [k + ℓ] .

Here we must show that this is well-defined, due to the fact that we have
defined the addition using equivalence class representatives. Suppose,
then that [k′] = [k] and [ℓ′] = [ℓ]. This means k′ ≡ k mod m and ℓ′ ≡ ℓ
mod m. Hence we have k′ = k + pm and ℓ′ = ℓ + qm for some p, q ∈ Z.
Therefore k′ + ℓ′ = (k+pm)+(ℓ+ qm) = k+ ℓ+(p+ q)m, which shows
k′ + ℓ′ ≡ k + ℓ mod m. This means [k′ + ℓ′] = [k + ℓ], and this shows
that our definition is well-defined. Note that the identity element is [0].

We sometimes denote a monoid by writing (M, · ) to indicate its law of
composition. This is necessary when the intended operation is not clear in the
context. For example (Z, +) and (Z, · ) are two different monoid structures
having the same underlying set.

Note that a monoid is always a non-empty set, since it contains the ele-
ment e.

Commutativity. A monoid M is called commutative if for all x, y ∈ M we
have x · y = y · x.

One will easily verify that the monoids defined in (a), (b), and (d) above
are commutative. However, example (c) is not, in general: consider for ex-
ample the functions f, g ∈ F(R) given by f(x) = x2 and g(x) = x + 1. Then
(f ◦ g)(x) = (x + 1)2 and (g ◦ f)(x) = x2 + 1. These two are not the same
function; they differ at x = 1, for example.

By convention, we only use the symbol + for commutative operations.

Group. A group is a monoid G with the following property: For every x ∈ G
there is an element xinv, called the inverse of x, with the property

x · xinv = xinv · x = e
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(where e is the identity element).
The inverse xinv is easily shown to be unique to x. If x′

inv were another
such element we have

xinv = xinv · e = xinv · (x · x′
inv) = (xinv · x) · x′

inv = e · x′
inv = x′

inv

When we are using the symbol + for the law of composition in a com-
mutative group, we denote the inverse of an element x by −x, and we write
x − y for x + (−y).

Examples. Amongst the examples (a) – (d) above of monoids, note that (b)
and (d) are groups: The inverse of k ∈ Z is −k, and the inverse of [k] ∈ Zm

is [−k]. Example (a) fails since 0 ∈ R has no multiplicative inverse. However,
if we replace R by either R − {0} or R+ we have a group, where the inverse
of x is 1

x
= x−1.

Modular Arithmetic. The group Zm is called a modular group, and op-
erations involving its law of composition, such as [6] + [13] = [1] in Z9, are
called modular arithmetic.

Homomorphism. Suppose we have two groups (G, · ) and (G′, ◦ ). A func-
tion ϕ : G → G′ is called a group homomorphism if for all x, y ∈ G we
have

ϕ(x · y) = ϕ(x) ◦ ϕ(y) .

We leave it as an exercise to show the if e ∈ G and e′ ∈ G′ are the identity
elements and ϕ is a homomorphism, then ϕ(e) = e′.

A homomorphism ϕ : G → G′ is called an isomorphism if it is bijective,
i.e., one-to-one and onto. In this case there is an inverse function ϕ−1 : G′ →
G, and ϕ−1 will be an isomorphism as well. If such an isomorphism exists we
say G and G′ are isomorphic.

Examples.

(1) Let S be the set {±1} ⊂ R, multiplication. This is a group. The func-
tion ϕ : S → Zm defined by ϕ(1) = [0], ϕ(−1) = [1] is a homomor-
phism, and in fact, an isomorphism.

(2) Consider the function discussed earlier which wraps the real line around
the circle. This is the function w : R → R / ∼ defined by w(x) = x̄.
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The set R/ ∼ inherits from R the law of composition +, by which
x̄+ȳ = x + y. (One shows this is well defined by a proof analogous to the
proof in (d) that addition is well-defined in Zm.) Thus we have groups
(R, +) and (R/ ∼, +), and the function w is a group homomorphism.
This homomorphism is onto but not one-to-one, hence it is not an
isomorphism.

(3) For b ∈ R+, we have the encountered the functions f : R → R+ and
g : R+ → R defined by fr = br and g(x) = logb x. These are homo-
morphisms between the groups (R, +) and R+, · ), which are inverse to
each other as functions. Hence these two groups are isomorphic. The
details are left as an exercise.

The Group of Intervals. The later example is especially relevant since
we have identified the set of musical intervals with the sets R and R+, the
former giving additive measurement (the units depending on the base b),
the latter giving multiplicative measurement, or interval ratio. We see by
either identification the the set of intervals forms a group, where the law of
composition is the usual composition of intervals, i.e., following one interval
by the other. We see, then, that the identity element in the group of intervals
is the unison interval and the inverse of an interval is its opposite interval.
The isomorphisms f and g are precisely the conversion from multiplicative
to additive measurement, and back.

The Group of Modular Intervals. Elements of the group (R / ∼, +) of
(2) can be identified with the set of equivalence classes of intervals modulo
octave. Thus the set of these classes becomes a group, which we’ll call the
group of modular intervals. The law of composition, is defined by taking
representatives, adding them, and taking the class of the sum. Thus we have,
for example third + ninth = tritone, and fourth + fifth = unison.

The Group of Modular Chromatic Intervals. We have noted that the
set of keyboard intervals, measured in semitones, can be identified with the
group Z. Let us note that the equivalence relation which says intervals of k
and ℓ semitones are octave equivalent is just the statement that k − ℓ is a
multiple of 12, i.e., k ≡ ℓ mod 12. We will call equivalence classes modular
chromatic intervals. Therefore the set of modular chromatic intervals can be
indentified with Z12, making it a group whose law of composition is iteration
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of intervals. Any modular chromatic interval can be has a unique equivalence
class representative n semitones, where 0 ≤ n ≤ 11. As with performing
addition in Z12, the iteration of modular chromatic intervals can be seen as
a sequence of rotations on the modular clock.

Example. Consider the composition of a minor third, an octave, and a
fourth. These intervals are represented in semitones as 3, 12, and 5, respec-
tively. However the octave can be represented by 0 semitones. The composi-
tion of the three intervals yields the modular chromatic interval represented
by 8 semitones, which is an augmented fifth. This is merely the statement
that [3] + [12] + [5] = [8] in Z12, which follows from the fact that 20 ≡ 8
mod 12.

Nonstandard Chromatic Intervals. If we divide the octave into n equal
intervals and measure intervals by n-chromatic units, the group of intervals
is identified with Zn.

Modular clock. The group Zn can be realized as the group of rotations of
a regular n-gon, or of a “clock” with n positions, dividing the circle into n
equal arcs, with a position at the top of the circle. For example, Z4 is the
group of rotations of the square, or a clock with four positions:

We label a clock position by the group element which rotates the top posi-
tion to that position. Hence the top position is labeled [0], the first position
clockwise from [0] is labeled [1], etc. The positions of the clock are thereby
in one-to-one correspondence with the elements of Zn. With this labeling
the addition of elements [k] and [ℓ] in Zn can be computed by rotating the
clock clockwise by k positions (counterclockwise if k is negative), then by ℓ
positions. The sum [k] + [ℓ] will be where the top position lands after these
two rotations. vskip 10pt

Creating a Twelve-Tone Row Chart Using Modular Arithmetic. We
can generate a twelve-tone row by designating a note class, then identifying
each of the twelve note classes of the row with its modular chromatic interval
from the designated note class. This just means we list the elements of Z12



78 CHAPTER 7. OCTAVE IDENTIFICATION

in some order. For what is to follow it will be important to let the designated
note be the first note class of the sequence, so that the first modular integer
is [0].

Example. We revisit the first example in Chapter 5, which generates the
row chart whose original row is:

G
E

ˇ
G

ˇ
F♯

4̌
A

ˇ
G♯

4ˇ
C

ˇ
F

ˇ
D

ˇ
D♯

4̌
C♯

4ˇ
B

ˇ
B♭

2ˇ

As prescribed above, let E be our designated note class. The sequence, given
according to modular interval from E, is then:

[0] [3] [2] [5] [4] [8] [1] [10] [11] [9] [7] [6]

Provided our sequence starts with [0], the inversion of this row is obtained
by replacing each entry in the sequence by its additive inverse, or negative.
This is because we want the interval from the first entry to the nth entry in
the inversion to be the opposite of the interval from the first entry to the nth

entry in the original row. Hence the sequence of intervals for the inversion of
our given row is:

[0] [9] [10] [7] [8] [4] [11] [2] [1] [3] [5] [6]

Let us number the rows an column by the integers 1 through 12 and use the
ordered pair (i, j) to refer to the position at row i and column j. We label
the entries of the original row as:

a1 = [0] a2 = [3] a3 = [2] a4 = [5] a5 = [4] a6 = [8]

a7 = [1] a8 = [10] a9 = [11] a10 = [9] a11 = [7] a12 = [6]

The first column will be the inversion, given by the negatives in Z12:

−a1 = [0] −a2 = [9] −a3 = [10] −a4 = [7] −a5 = [8] −a6 = [4]

−a7 = [11] −a8 = [2] −a9 = [1] −a10 = [3] −a11 = [5] −a12 = [6]

We now proceed to fill in each position of the chart with the element of
Z12 corresponding to the appropriate note class. According to the procedure
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described in Chapter 5, the entry in the (i, j) position should make the in-
terval aj with the leftmost entry in the ith row, which is −ai. Therefore the
correct element of Z12 is aj − ai. For example, the entry in position (8, 5) is
a5 − a8 = [4] − [10] = [6]. Filling in the chart in this fashion yields the row
chart:

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

[0] [3] [2] [5] [4] [8] [1] [10] [11] [9] [7] [6]

[9] [0] [11] [2] [1] [5] [10] [7] [8] [6] [4] [3]

[10] [1] [0] [3] [2] [6] [11] [8] [9] [7] [5] [4]

[7] [10] [9] [0] [11] [3] [8] [5] [6] [4] [2] [1]

[8] [11] [10] [1] [0] [4] [9] [6] [7] [5] [3] [2]

[4] [7] [6] [9] [8] [0] [5] [2] [3] [1] [11] [10]

[11] [2] [1] [4] [3] [7] [0] [9] [10] [8] [6] [5]

[2] [5] [4] [7] [6] [10] [3] [0] [1] [11] [9] [8]

[1] [4] [3] [6] [5] [9] [2] [11] [0] [10] [8] [7]

[3] [6] [5] [8] [7] [11] [4] [1] [2] [0] [10] [9]

[5] [8] [7] [10] [9] [1] [6] [3] [4] [2] [0] [11]

[6] [9] [8] [11] [10] [2] [7] [4] [5] [3] [1] [0]

In order to convert this to a chart of note classes, it is helpful to draw the
modular clock, additionally labeling each position by the note class which
has the given interval from E, as follows:

E
F

F♯

G

G♯

A
B♭B

C

C♯

D

D♯

[0]
[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

Using this we can translate back to the chart in Chapter 5.
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Creating an n-Tone Row Chart Using Modular Arithmetic. This
method is equally valid, of course, if we were to create, for some n ∈ Z+, an
n-tone row chart from an n-tone original row. Given an original row

a1 = [0], a2, . . . , an

from Zn, we form the n × n row chart by taking:

entry (i, j) = aj − ai (1)

Here the arithmetic takes place in Zn.

Example. We will prepare to make a seven-tone composition using this row
from Z7:

a1 = [0] a2 = [4] a3 = [1] a3 = [6] a4 = [5] a6 = [2] a7 = [3] (2)

We begin by detuning the synthesizer to play in seven-tone equal temper-
ament. Suppose we decide to use the white keys on the keyboard, detuned
around C. The 7-chromatic interval is given in cents by 1200/7 ≈ 171.43. Us-
ing the method described in Chapter 5, we detune the white keys as follows:

C D E F G A B

0 −29 −57 14 −14 −43 −71
(3)

We now associate each of these seven redefined note classes to an element
of Z7 according to its modular interval from C. The following modular clock
allows us to easily convert from one to the other.

C
D

E

FG

A

B

[0]

[1]

[2]

[3][4]

[5]

[6]

Referring to (1), we fill in the rows of the 7 × 7 row chart with elements of
Z7 using (2). This gives the chart below on the left, which translates to the
chart on the right using the clock above.
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1 2 3 4 5 6 7

1

2

3

4

5

6

7

[0] [4] [1] [6] [5] [2] [3]

[3] [0] [4] [2] [1] [5] [6]

[6] [3] [0] [5] [4] [1] [2]

[1] [5] [2] [0] [6] [3] [4]

[2] [6] [3] [1] [0] [4] [5]

[5] [2] [6] [4] [3] [0] [1]

[4] [1] [5] [3] [2] [6] [0]

row chart with modular integers

1 2 3 4 5 6 7

1

2

3

4

5

6

7

C G D B A E F

F C G E D A B

B F C A G D E

D A E C B F G

E B F D C G A

A E B G F C D

G D A F E B C

row chart with note classes

A seven-tone composition based on this row chart might contain the follow-
ing:

ć
I

G

4
4

4
4 ˇ ˇ ˇ ˇ

=

ˇ ň
ň̌ ˇ

˘`

> ˇ ˇ ˘ ˘

ˇ ¯

? ˇ ˇ -ˇ
ˇ ˇ
Ð̌Ð̌

¯

¯¯

This employs the inversion of the original row, which is the left column of
the row chart. The sequence is used three times, first melodically, then twice
with some harmonic content. The passage should be played with the detuning
given in (3).

Exponential Notation in a Group. Let (G, · ) be a group, and let x ∈
G, n ∈ Z+. We define xn to be the n-fold composition x · x · · · ·x in G. We
define x0 to be e, the identity element of G. Finally we define x−n to be the
n-fold composition x1− · x−1 · · · ·x−1. We have now defined xn for any n ∈ Z.
With these definitions, the following familiar-looking rules of exponents are
valid for any x ∈ G, n, m ∈ Z :

xn+m = xn · xm

(xn)m = xnm (4)

We leave it as an exercise to verify these rules.



82 CHAPTER 7. OCTAVE IDENTIFICATION

In the case where the group is commutative and the group law is denoted
by + , we usually denote the n-fold sum x + x + · · · + x by nx rather than
xn. In this situation the rules (4) become:

(n + m)x = nx + mx

m(nx) = (nm)x
(5)

Generators and Cyclic Groups. Given t ∈ G, G a group, we call t a
generator for G if every element of G can be written in the form tn for some
n ∈ Z, in other words,

{tn |n ∈ Z} = G .

If G has a generator, we call G a cyclic group.

Suppose G is cyclic and t ∈ G is a generator. Consider the set

S = {n ∈ Z+ | tn = e} .

If S = ∅, then any two powers tn and tm of t will be distinct unless
n = m, and therefore the elements of G are in one-to-one correspondence
with elements of Z, and this correspondence defines an isomorphism of G
with Z. This assertion will appear as an exercise.

If s 6= ∅, the S has a smallest element m, by the Well-Ordering Principle.
The positive integer m will be called the order of t. We claim that any element
x ∈ G has a unique expression x = tr with 0 ≤ r < m. This follows from
the Division Algorithm: Writing n = qm + r as in the algorithm, we have
tn = tmq+r = tmq · tr = (tm)q · tr = eq · tr = e · tr = tr. This uses the rules
of exponents in (4). The uniqueness of r is fairly apparent. If two distinct
integers r and r′, with 0 ≤ r < r′ < m had the property, then we would
have tr

′−r = e and r′ − r < m, violating the minimality of m. So the claim is
proved, and we see that

G = {e, t, t2, . . . , tm−1}

with these elements distinct. Therefore G has precisely m elements.

Example. The group Zm is a cyclic group, and [1] is a generator having
order m. This is because m is the smallest integer n such that n[1] = [0].
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A cyclic group can have more than one generator (and usually does).
Consider as an example a group G having a generator t of order 8. In this
case G consists of the eight elements

e, t, t2, t3, t4, t5, t6, t7 .

Consider u = t3 ∈ G. We claim that u is also a generator. We show this
directly by writing the powers of u as powers of t. We have u2 = (t3)2 = t6

and u3 = (t3)3 = t9 = t. Continuing in this fashion we get

e, u = t3, u2 = t, u4 = t4, u5 = t7, u6 = t2, u7 = t5

and this accounts for all the elements of G.
In Chapter 7 we will see that if t is a generator having order m, then a

power tn is also a generator precisely when the only positive integer dividing
both m and n in Z is 1, i.e., gcd (n, m) = 1. Zm is a cyclic

Generating Intervals. The group of modular n-chromatic intervals is iden-
tified with Zn. We call such an interval a generating interval if it generates the
group Zn. These will be the intervals whose iterations give all the n-chromatic
intervals.

By the criterion advertised above, these coincide with those classes [m] ∈
Zn for which 1 is the only positive integer dividing m and n. Hence there are
φ(n) generators in Zn, φ being the Euler phi function. With this criterion
one easily checks that the generating 12-chromatic intervals are the semitone
([1]), the fourth ([5]), the fifth ([7]), and the major seventh ([11]).

Exercises

1. Which of the following sets, together with with given operation, form
a monoid, and of those which are also a group? Justify your answers.

(a) Q , + (b) Z+ , · (c) {−1, 0, 1} , ·
(d) the set of keyboard intervals, composition of intervals

2. Show that the functions f(x) = bx and g(x) = logb(x) are group ho-
momorphisms, and that they are inverse to each other, thereby giving
isomorphisms between the groups (R, +) and (R+, · ). Explain how this
relates to the measurement of musical intervals.
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3. Express the following compositions of modular 12-chromatic intervals
as r semitones with 0 ≤ r < 12. Interpret all these compositions as
operations in Z12.

(a) 14 semitones and 23 semitones

(b) two fifths and a major third

(c) six fifths

(d) up three minor thirds, down six steps

4. Prove using the Division Algorithm that if I is an interval in the n-
chromatic scale, the iteration of I n times is equivalent modulo octave
to the unison interval. Restate this as an assertion about elements of
the group Zn.

5. Prove that Zn has exactly n elements by showing that [0], [1], . . . , [n−1]
are distinct, and that these are all of the elements of Zn.

6. For each of these choices of n, determine φ(n) by listing all the generat-
ing intervals in the n-chromatic scale. Indicate which pairs of generating
intervals are inverse to each other, and for each pair draw the circle of
intervals which is based on one element of the pair in the clockwise di-
rection, the other element of the pair in the counterclockwise direction.

(a) n=6 (b) n=5 (c) n=9 (d) n=10

7. Suppose G is a group and g ∈ G. Show that there is a unique group
homomorphism ϕ : Z → G such that ϕ(1) = g.

8. List all generators for these cyclic groups:

(a) (Z , +) (b) ({1,−1} , ·) (c) (Z7 , +) (d) (Z12 , +)

9. Explain why (R , +) is not a cyclic group.

10. Create n-tone row charts for the following choices of n and the given
sequences of original rows in Zn :

(a) n = 3 ; ([2], [0], [1])
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(b) n = 5 ; ([4], [0], [2], [3], [1])

(c) n = 6 ; ([5], [2], [4], [1], [3], [0])

(d) n = 7 ; ([3], [5], [6], [0], [2], [1], [4])
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Chapter 8

Algebraic Properties of the
Integers

We have identified a musical interval I with a positive real number x ∈ R+.
Since Z+ ⊂ R+, each positive integer gives an interval. For example, we have
seen that the integer 2 represents the octave, and that the integer 3 is an
interval about 2 cents greater than the keyboard’s octave-and-a-fifth (1900
cents), as shown by the calculation 1200 log2 3 ≈ 1901.96.

G
2 = octave interval

¯¯ G
3 ≈ octave-and-a-fifth interval

¯
¯ G

4 = two octave interval

¯
¯

We will now investigate some properties of the integers Z which relate to
musical phenomena.

Ring. A non-empty set R endowed with two associative laws of composition
+ and · is called a ring if (R, +) is a commutative group, (R, · ) is a monoid,
and for any a, b, c ∈ R we have a · (b + c) = a · b + a · c and (b + c) · a =
b · a + c · a (The latter property is called distributivity.). We call the +
operation addition and the · operation multiplication, and we often denote
the latter by dropping the · and simply writing ab for a · b. We write 0 and
1 for the additive and multiplicative identity elements, respectively. We say
the ring R is commutative if the monoid (R, · ) is commutative. (We have
already insisted that (R, +) is commutative.) We will be dealing only with
commutative rings here, so henceforth when we say “ring” we will mean

87
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“commutative ring”.
Two properties that we would expect to hold for any x in a ring R are

these: (−1) · x = −x and 0 · x = 0. We leave it as an exercise that these
properties can indeed be deduced from our assumptions.

Units. We have assumed that (R, · ) is a monoid; it will not be a group
in general1 since 0 has no multiplicative inverse. However, some elements
of R (1, for example) will have multiplicative inverses. If x ∈ R is such an
element, we call x a unit, and we denote its multiplicative inverse2 is by x−1.
The set of units in R, sometimes denoted R∗, form a group with respect to
multiplication.

Cancellation. A ring R is called an integral domain if whenever a, b ∈ R
with ab = 0, then a = 0 or b = 0.

Proposition (cancellation) If R is an integral domain, and a, b, c ∈ R
with a 6= 0 and ab = ac, then b = c.

Proof. We have 0 = ab − ac = a(b − c). Since a 6= 0 and R is an integral
domain, we must have b − c = 0, i.e., b = c.

Examples. The reader should verify the details in the following four exam-
ples.

(1) Integers. The set of integers Z, taking + and · to be the usual addition
and multiplication, is the most basic example of a ring. It is commuta-
tive, and it is an integral domain. The group of units is Z∗ = {1,−1}.

(2) Real Numbers. The set R also becomes a ring under the usual + and
· . It is also an integral domain. Here we have R∗ = R − {0}.

(3) Rational Numbers. Q is an integral domain, sharing with R the
property that all non-zero elements are units.

(4) Modular Integers. For m ∈ Z+, we give Zm a ring structure as
follows: The additive group (Zm, +) is as before. For [k], [ℓ] ∈ Zm,

1The only situation when (R, · ) is a group is when R = {0}, which coincides with the
case 0 = 1. In this case R is called the trivial ring.

2The multiplicative inverse x−1 is unique to x. The proof of this mimics the proof that
inverses in a group are unique.
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define [k] · [ℓ] = [kℓ]. The proofs that this is well-defined and that the
axioms for a ring are satisfied by + and · are left as an exercise. Note
that [0] and [1] are the additive and multiplicative identity elements,
respectively, of Zm.

Ideals. A subset J ⊆ R is called an ideal if it is a subroup of the additive
group (R, +) and if whenver a ∈ R and d ∈ J , then ad ∈ J .

One example of an ideal in R is the zero ideal {0}. Any other ideal will
be called a non-zero ideal. The ring R itself is an ideal.

Given a ∈ R we can form the set of all multiples of a in R, namely the
set

aR = {x ∈ R | x = ab for some b ∈ R}.
Such an ideal is called a principal ideal, and the element a is called a generator
for the ideal. Note that {0} and R are principle ideals by virtue of {0} = 0R
and R = 1R.

If R is an integral domain in which every ideal is principal, we call R a
principal ideal domain, abbreviated PID.

For example, the set of even integers forms an ideal in Z. This ideal is a
principal ideal, since it is equal to 2Z. We will now show that:

Theorem Z is a principal ideal domain.

Proof. This is based on the Division Algorithm. Let J be an ideal in Z. If
J = {0}, then J = 0Z and we are done. Otherwise J contains non-zero
integers, and since n ∈ J implies (−1)n = −n is in J , then J must contain
some positive integers. Let n be the smallest positive integer in J (such an
n exists by the Well-Ordering Principle). We claim that J = nZ. Clearly
nZ ⊆ J . To see the other containment, let m ∈ J , and use the Division
Algorithm to write m = qn + r with 0 ≤ r < n. Then r is in J since
r = m − qn. By the minimality of n, we conclude r = 0, hence n = qn ∈ bZ
as desired.

If J ⊆ Z is an ideal with J 6= 0, and if n is a generator for J , then the
only other generator for J is −n. This follows easily from the fact that any
two generators are multiples of each other, and will be left as an exercise.
Thus any non-zero ideal has a unique positive generator.

Greatest Common Divisor. Suppose we are given m, n ∈ Z, not both
zero. The subset mZ + nZ, by which we mean the set of all integers a which
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can be written a = hm + kn for some h, k ∈ Z, is an ideal in Z. Therefore
it has a unique positive generator d, which divides both m and n. If e is
any other positive integer which divided both m and n then m, n ∈ eZ so
mZ + nZ = dZ ⊆ eZ, and hence e divides d. Therefore d ≥ e and we
(appropriately) call d the greatest common divisor of m and n. The greatest
common divisor is denoted gcd(m, n). Since dZ = mZ + nZ, there exist
integers h, k such that d = hm + kn.

To say that gcd(m, n) = 1 is to say that the only common divisors of m
and n in Z are ±1. In this case we say that m and n are relatively prime.

Prime Numbers. A positive integer p is called prime if it is divisible in Z

by precisely two positive integers, namely 1 and p. (Note that 1 is not prime
by virtue of the word “precisely”.) The first ten prime numbers are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29 (8.1)

It will be left as an exercise to show that if p is prime and n ∈ Z, then either
p divides n or gcd(p, n) = 1.

Sieve of Eratosthenes. A systematic procedure for finding the prime num-
bers was given by the Greek astronomer and mathematician Eratosthenes of
Cyrene (3rd century BC). We conceive of the positive integers as an infinite
list 1, 2, 3, 4, 5, 6, . . . , then proceed to cross out certain numbers on the list,
as follows. After crossing out 1, we cross out all numbers following 2 which
are divisible by 2.

1−, 2, 3, 4−, 5, 6−, 7, 8−,9, 10−−, 11, 12−−, 13, 14−−, 15,

16−−, 17, 18−−, 19, 20−−, 21, 22−−, 23, 24−−, 25, 26−−, 27, 28−−, 29, 30−−, . . .

Then we find the next number after 2 which is still on the list, which is 3.
We then cross out all numbers following 3 which are not divisible by 3.

1−, 2, 3, 4−, 5, 6−, 7, 8−,9−, 10−−, 11, 12−−−−, 13, 14−−, 15−−,

16−−, 17, 18−−, 19, 20−−, 21−−, 22−−, 23, 24−−, 25, 26−−, 27−−, 28−−, 29, 30−−, . . .

When this process can be continued up to an integer n, the the numbers
below n which remain on the list are precisely the primes which are ≤ n.

1−, 2, 3, 4−, 5, 6−, 7, 8−,9−, 10−−, 11, 12−−−−, 13, 14−−, 15−−,

16−−, 17, 18−−, 19, 20−−, 21−−, 22−−, 23, 24−−, 25−−, 26−−, 27−−, 28−−, 29, 30−−, . . .
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We have shown that the primes ≤ 30 are the ten integers in the list 8.1 above.
If the procedure were continued infinitely to completion, the complete list

of primes would remain.

Theorem If p is a prime number and if p divides mn, where m, n ∈ Z, then
p divides m or p divides n.

Proof. Suppose p does not divide m. Then gcd(m, p) = 1 and we can write
1 = hm + kp for some integers h and k. Multiplying this equation by n gives
n = hmn + kpn. Note that p divides both summands on the right, since p
divides nm. therefore p divides n. This concludes the proof.

One can easlily conclude that if a prime number p divides a product
m1m2 · · ·ms, then p divides at least one of m1, m2, . . . , ms.

Unique Factorization. We now establish the fact that every positive integer
can be factored uniquely as the product of primes.

Theorem Let n ≥ 1 be an integer. Then n can be factored as

n = pα1

1 pα2

2 · · · pαr

r

where r ≥ 0, p1, p2 . . . , pr are distinct primes, and α1, α2, . . . , αr ≥ 1. More-
over, this factorization is unique, meaning that if n = qβ1

1 qβ2

2 · · · qβt

t is another
such factorization, then t = r and after rearranging we have p1 = q1, p2 =
q2, . . . , pr = qr.

Proof. We first establish the existence of a prime factorization for all integers
≥ 1. If not all positive integers admit a prime factorization, then by the Well-
Ordering Principle we can choose a smallest integer n which fails to admit a
factorization. We note that n itself could not be prime, otherwise it admits
the factorization in the theorem with r = 1 and p1 = n. Since n is not prime,
it has a positive divisor m which is neither n nor 1. We have n = mℓ and
clearly ℓ is neither n nor 1. We must have 1 < m, ℓ < n, so by the minimality
of n, both m and ℓ have prime factorizations. But if m and ℓ have prime
factorizations, then so does n since n = mℓ. This is a contradiction. Hence
all integers ≥ 1 have a prime factorization.

It remains to show the uniqueness. If pα1

1 pα2

2 · · · pαr
r = qβ1

1 qβ2

2 · · · qβt

t , then
p1 divides qβ1

1 qβ2

2 · · · qβt

t . Since p1 is prime it must divide one of q1, q2, . . . , qt.
Say p1 divides q1. Since q1 is also prime we must have p1 = q1, so we can
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cancel to get pα1−1
1 pα2

2 · · · pαr
r = pβ1−1

1 qβ2

2 · · · qβt

t . We continue cancelling p1 to
deduce that α1 = β1. The remaining equation is pα2

2 · · · pαr
r = qβ2

2 · · · qβt

t . As
above we can argue that p2 = q2 (after rearranging) and that α2 = β2. We
continue to get the desired result.

Modular Integers. The algebraic properties we have established for Z tell
us many things about the rings of modular integers Zm, for m ∈ Z+. One
such fact concerns the matter of when an element [n] ∈ Zm is a generator of
the additive group (Zm, +).

Theorem Given [n] ∈ Zm, the following three conditions are equivalent.

(1) gcd (m, n) = 1.

(2) [n] is a generator of the additive group (Zm, +).

(3) [n] is a unit in the ring Zm (i.e., [n] ∈ Z∗
m).

Proof. We first consider conditions (2) and (3). If [n] is a generator of (Zm, +),
then all elements of Zm can be written as k · [n], for some k ∈ Z. (This is the
way we write exponentiation in an additive group.) In particular, we have
[1] = k · [n]. But, by the definition of multiplication in Zm, k · [n] = [k] · [n].
Therefore [k]·[n] = [1], which shows [n] is a unit. Conversely, if [n] ∈ Z∗

m, with
inverse [k] = [n]−1, then for any [ℓ] ∈ Zm we have [ℓ] = [ℓ] · [1] = [ℓ] · [k] · [n] =
[ℓk] · [n] = ℓk · [n], which shows that [ℓ] is a multiple (“power”) of [n]. Hence
[n] is a group generator for (Zm, +).

The equivalence of (1) with these conditions, the proof of which uses
greatest common divisors, is left as an exercise.

Euler Phi Function. For any m ∈ Z+, we have defined the Euler phi
function φ(m) to be the number of positive integers n with 1 ≤ n < m
which are relatively prime to m. According to the above theorem, φ(m) also
counts the number of elements in Z∗

m, and the number of group generators
for (Zm, +). By virtue of the latter, φ(m) counts the number of generating
intervals in the m-chromatic scale.

For example φ(12) = 4, since the numbers 1, 5, 7, 11 are precisely the
positive integers < 12 which are relatively prime to 12. This reflects the fact
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that the generating intervals in the 12-chromatic scale are the semitone, the
fourth, the fifth, and the major seventh.

Patterns of m on n in Music. Composers sometimes create ingenious mu-
sical passages by imposing a pattern of m notes or beats against a pattern of
n such, where gcd (m, n) = 1. This technique exploits (perhaps unknowingly
by the composer) the fact that [m] is a generator in Zn (and vice versa).

One way this can occur is by cycling m pitches through a repeated rhyth-
mic pattern of n notes. This is exemplified in the main melodic line of the
big band song In the Mood. Here m = 3 and n = 4. The song’s “hook” lies in
the repetition of the rhythmic figure comprising four eighth notes in swing
time, shown below.

ˇ ˇ ˇ ˇ =

—flflfl—
3

ˇ (ˇ
—flflfl—

3

ˇ (ˇ

The melody repeats the sequence of three pitches C4, E♭
4, A♭

4, through the
above rhythmic pattern as follows:
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ˇ
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3

ˇ 6 ˘

Note that both patterns end their cycle on the twelfth eighth notes and not
before. The reason for this lies in the previous theorem. Let the top numbers
represent the elements of Z4 = {[1], [2], [3], [4] = [0]}. Identifying each of the
bottom numbers with the element of Z4 represented directly above it, we
see the effect of adding [3]s successively in Z4. The multiples of [3] (i.e., the
elements of Z4 lying above the 3s) are, respectively [3], [2], [1], [4] = [0], which
exhausts the set Z4. This is because, since gcd (3, 4) = 1, [3] is a generator
of Z4, so all four of the numbers 1-4 must appear above the 3 s before any
of them makes a repeat appearance above a 3. Each three-note cycle below
starts on a different number 1-4, and the two cycles culminate together only
at 3 × 4 = 12 eighth notes, and not before.

There is symmetry between the two patterns: We could let the bottom
numbers represent elements of Z3 = {[1 ], [2 ], [3 ] = [0 ]}. Then the cycles
above are just adding successive [4 ]s in Z3. Each of the four-note cycles
starts on a different number 1-3, for all the same reasons as above.
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The poignant passage below, from George Gershwin’s Rhapsody in Blue,
exibits the same phenomenon with m = 3, n = 5, starting in the third
measure.
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Here the three pitches D♯
4, D4 and C♯

4 are cycled against the five-note rhythmic
pattern comprising two eighth notes followed by three quarter notes. The 3 on
5 double pattern completes itself after 3×5 = 15 notes, occupying measures 3-
5. The entire pattern is then repeated in measures 6-8 with different harmony.

Another type of m on n pattern occurs when a melodic figure of duration
m beats is repeated in a meter which has the listener counting in groups of n
beats. An example of this occurs in the vamp section of the 1971 blues-pop
song Ain’t No Sunshine.
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In this example a rhythmic figure comprising a sixteenth note followed by
an eighth note (or two tied sixteenth notes) repeated in 4

4
time. Since the

length of the figure is 3 sixteenth notes, and each measure has 16 sixteenth
notes, we view this as a 3 on 16 pattern. Both cycles commense together at
the beginning of the second measure, and the double pattern runs its course
in three measures, or 3 × 16 = 48 sixteenth notes. The m on n pattern
represents a form of polyrhythm fundamentally different from the tuplet,
here presenting the listener with the choice of counting the beats in groups
of m or in groups of of n.

Each of these examples is a slightly different “game” played by the com-
poser, and in each the listener gets a sense of fulfillment only when the double
pattern is complete.

Exercises

1. Prove that in any (commutative) ring R we have (−1) · x = −x and
0 · x = 0, for any x ∈ R.

2. Give the prime factorizations of these integers, writing the primes in
ascending order, as in 23 · 3 · 72.

(a) 110 (b) 792 (c) 343 (d) 3422 (e) 15 × 1023

3. Call a musical interval a prime interval if its interval ratio is a prime
integer; call it a rational interval if its interval ratio is a rational number.
Show that all rational intervals can be written as compositions of prime
intervals and their opposites.

4. Show that the set of prime intervals do not form a monoid under com-
position of intervals. Show that the set of rational intervals form a
group.

5. To identify all primes ≤ n, we performed the sieve of Eratosthenes,
listing the integers 1 to n, then crossing off 1 and all higher multiples
of each m for 1 < m < n. Actually we could have stopped sooner, just
checking m in the interval 1 < m < s. What s would suffice?

6. Express each of these ideals in Z in the form nZ, where n is a positive
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integer:

(a) 12Z + 15Z (b) 5Z + (−20)Z

(c) 10Z + 44Z (d) 13Z + 35Z

7. Show that the multiplication [k] · [ℓ] = [kℓ] in Zn is well-defined, and
that Zn is a ring.

8. Verify that Q (the rational numbers) is a ring, and, in fact, an integral
domain. Show that the only ideals in Q are {0} and Q.

9. Prove that there are infinitely many prime numbers. (Hint: If p1, . . . , pn

were a complete list of primes, consider a prime factor of p1 · · · pn +1. )

10. Prove that if p is prime and n ∈ Z, then either p |n or gcd(p, n) = 1.

11. Given m ∈ Z+ and n ∈ Z, prove that [n] is a generator for Zm if and
only if gcd (m, n) = 1. Interpret this as a statement about generating
intervals in the modular m-chromatic scale.

12. Prove that m iterations of any m-chromatic interval is a multioctave,
i.e., ℓ octaves for some ℓ ∈ Z. Interpret this as a statement about an
element [k] of Zm, and use this statement to prove that the order r of
[k] divides m.

13. Prove that the ring Zn is an integral domain precisely when n is a prime
number.

14. Compose a brief melodic passage using the m on n technique discussed
at the end of this chapter.



Chapter 9

The Integers as Intervals

We will now determine, for each of the first several positive integers n =
1, 2, 3, . . ., which equally tempered scale interval best approximates the in-
terval given by the ratio n and we will calculate the closeness of the ap-
proximation. This will tell us how to detune keyboard intervals so that the
integer ratios can be heard. Once this is done, it is enlightening to “listen to
the integers”, noting that each possesses a unique “personality” which seems
determined by the integer’s prime factorization.

We will occasionally employ the slightly awkward term integral interval
to refer to a musical interval whose ratio is an integer. We call such and
interval a prime interval if its ratio is a prime.

The set of integral intervals forms a monoid under composition of inter-
vals; this monoid can be identified with (Z, · ).

One. The ratio 1, representing unison, is the identity element of the moniod
(Z, · ) of integral intervals, and the identity element of the group (R, · ) of
all interval ratios. It is not terribly interesting, since it is the ratio of two
frequencies giving the same pitch.

Two. We have noted the fact that first prime, 2, gives the octave, which
might be called music’s most consonant interval. When two notes an octave
apart are sounded they blend together almost as one. Octave equivalence is
ingrained in musical notation by virtue of the fact that notes which form the
interval of one or more octaves are assigned the same letter of the alphabet.
Only by using subscripts such as C2 or A♭

5 (or by using a musical staff) can
we distinguish them notationally.

97
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Moreover, the keyboard’s equally tempered chromatic scale is tuned to
give a perfect octave (since equal temperament is obtained by dividing the
interval given by 2 into 12 equal intervals). Hence the ratio 2 is rendered
pricisely by equal temperament. The interval from F2 to F3, shown below,
has frequency ratio exactly 2.

I
keyboard’s exact representation of 2

¯¯

Three. We have noted that the prime interval 3 is best approximated on
the keyboard by 19 semitones, or one octave plus a fifth, shown below as the
interval from F2 to C4.

I
keyboard’s approximation of 3, ≈ 2 cents flat

¯
¯

This approximation is about 2 cents under, since 3 is measured in cents by
1200 log2 3 ≈ 1901.96, and 1900 cents is 19 semitones, which is an octave
plus a fifth. This is a very good approxmation; it is very difficult for most of
us to perceive the difference between the octave plus a fifth and the interval
given by 3.

Four. The ratio 4 is two octaves by virtue of 4 = 22. It can be played precisely
on the keyboard, as can any integer ratio which is a power of two.

I
keyboard’s exact representation of 4

¯
¯

We will see that the powers of 2 are the only positive integers which is can
be played perfectly on a keyboard tuned to the the 12-note equally tempered
scale, or in fact on any chromatic scale which equally divides the octave. Yet
we will see that harmony derives from the integers.

Five. The next interesting integer ratio is the prime number 5, which is given
in cents by 1200 log2 5 ≈ 2786.31. The closest interval to this on the keyboard
is 2800 cents, which is two octaves plus a major third.
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ăIG
keyboard’s approximation of 5, ≈ 14 cents sharp

¯

¯

This is sharp by about 14 cents. Unlike the fifth’s approximation of 2, this
difference is perceptable, upon a careful listening, by most people with rea-
sonably good pitch discrimination. The tempered scale was shunned many
years primarily because of this particular discrepancy.

Six. The integer 6 = 3 · 2 is the smallest integer whose prime factorization
involves more than one prime. By virtue of the factorization 6 = 2 · 3, mul-
tiplicativity tells us that this interval is obtained by iterating the intervals
corresponding to 2 and 3. Thus we get an interval which is approximated on
the keyboard by an octave plus an octave plus a fifth, or two octaves and a
fifth.

ăIG
keyboard’s approximation of 6, ≈ 2 cents flat

¯

¯

Since the keyboard renders the octave precisely, its rendition of six should
have the same error as its approximation of 3, which is about 2 cents. This
is verified by the calculation

1200 log2 6 = 1200(log2 2 + log2 3)

= 1200 log2 2 + 1200 log2 3

≈ 1200 + 1901.96 = 3101.96

which shows the ratio 6 to be about 2 cents greater than 3100 cents (= 31
semitones), which is the keyboard’s two octaves plus a fifth.

Seven. The prime 7 is the lowest integer which is poorly approximated by
the tempered chromatic scale. In cents it is given by 1200 log2 7 ≈ 3368.83.
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The closest interval on the keyboard is 3400 cents, which over-estimates 7’s
interval by about 31 cents. This approximation is 34 semitones, which equals
two octaves plus a minor seventh.

ăIG
keyboard’s approximation of 7, ≈ 31 cents sharp

¯

2¯

Eight. Continuing, we note that 8, being 23, is exactly three octaves, and is
rendered precisely on the keyboard.

ăIG
keyboard’s exact representation of 8

¯

¯

Nine. Since 9 = 32, it is approximated by composing the octave-plus-a-fifth
interval with itself, which yields two octaves plus a ninth, or three octaves
plus a step. This has double the error of the approximation of 3, so the
approximation of 9 is about 4 cents flat.

ăIG
keyboard’s approximation of 9, ≈ 4 cents flat

¯

¯

Ten. We have 10 = 2 · 5, hence 10 is approximated by the composition of
the octave with the two-octaves-plus-a-third interval, yielding three octaves
and a third, and having the same error as the approximation of 5 (since 2 is
rendered exactly), which is about 14 cents sharp.
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ăIG
keyboard’s approximation of 10, ≈ 14 cents sharp

¯

¯

Eleven. The next integer, the prime 11, has the worst tempered scale ap-
proximation encountered so far: 1200 log2 11 ≈ 4151.32. Notice that it lies
very close to halfway between 41 semitones (three octaves plus a fourth) and
42 semitones (three octaves plus a tritone), slightly closer to the latter.

ăIG
keyboard’s approximation of 11, ≈ 49 cents sharp

¯

¯

This interval is truly “in the cracks”, lying about a quarter step from the
closest tempered scaleintervals.

Twelve. We note that 12, being 22 · 3, is approximated 14 cents sharp by
three octaves plus a fifth.

ăIG
keyboard’s approximation of 12, ≈ 2 cents flat

¯

¯

Thirteen. The last integer we will consider here is the prime 13. Since
1200 log2 13 ≈ 4440.53. Therefore 13 is best approximated on the keyboard
by 44 semitones, or three octaves plus a minor sixth, and the approximation
is about 41 cents flat.
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ăIG
keyboard’s approximation of 13, ≈ 41 cents flat

¯

2¯

Summary. The sequence of chromatic notes best approximating the pitch
having ratio n with F2, for n = 1, 2, 3, . . . , 13 is:

ăIG
1

ˇ
2

ˇ
3

ˇ 4

ˇ
5

ˇ
6

ˇ
7

2ˇ
8

ˇ
9

ˇ
10

ˇ
11

4ˇ

12

ˇ

13

2ˇ

The discussion above reveals that some of these approximations are very
close, others are not close at all.

Non-Chromatic Natue of Intervals Other Other Than Multiple Oc-
taves. Note that the only integral intervals on the keyboard so far are the
powers of 2 (multiple octave intervals). The following theorem shows that no
other integer ratios n occur on the keyboard.

Theorem The only keyboard intervals which have integer ratios are the pow-
ers of 2.

Proof. Suppose n ∈ Z+ is a keyboard interval. This means it is obtained
by composing k semitones, for some integer k ≥ 0. Since the semitone has

interval ratio 21/12, we have n =
(
21/12

)k
= 2k/12. Raising this to the power

12, we get n12 = 2k. By the unique factorization theorem, n can have only 2
in its prime factorization.

Exercises

1. For each given note N and integer k: label N by letter and subscript
(e.g., A♭

4); write on the staff the (12-chromatic) note M which best
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approximates the pitch having interval ratio k with N; and label M by
letter and subscript.

(a) ăIG 444
444

k = 6

6¯
(b) ăIG 222

222

k = 5

¯
(c) ăIG 4

4

k = 7

¯
(d) ăIG 44

44

k = 13
¯

2. For each given pair of positive integers m and n, express in m-chromatic
units the m-chromatic scale’s best approximation of the integer ratio
n, and indicate how many cents sharp or flat the approximation is.

(a) m = 7, n = 5

(b) m = 19, n = 3

(c) m = 13, n = 7

(d) m = 4, n = 8

(e) m = 23, n = 11

3. List the primes larger than 13 but less than 50, and for each, deter-
mine how closely its musical interval is approximated by the keyboard,
calculating the error in cents.

4. What chords are closely approximated by these integer ratios (starting
from a bottom note that is not in the chord)?

(a) 2 : 3 : 4 : 5

(b) 5 : 6 : 7 : 8

(c) 5 : 6 : 7 : 9

(d) 10 : 12 : 15 : 18

5. In the sequence of keyboard approximations of the integer ratios 1
through 13, find all sets of four adjacent notes which can be identified
as one of the chords listed in Chapter 3. Look for other chords which
appear within the entire sequence.
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Chapter 10

Timbre and Periodic Functions

Timbre. The term timbre refers to the quality or distinguishing properties of
a musical tone other than its pitch, i.e., that which enables one to distinguish
between a violin, a trombone, a flute, the vowel ō, or the vowel ē, even though
the tones have the same pitch. In order to address this phenomenon we need
to discuss a few more concepts relating to functions and graphs.

Piecewise Definitions and Continuity. A function can be defined in
piecewise fashion, for example,

g(x) =

{

x, for x ≤ 1

1, for x > 1,

whose graph is:

x

y y = g(x)

or

h(x) =

{

x, for x ≤ 1

2, for x > 1,

whose graph is:

105



106 CHAPTER 10. TIMBRE AND PERIODIC FUNCTIONS

x

y

y = h(x)

Note the “jump” that appears in the graph of y = h(x) at x = 1. This is an
example of a discontinuity, i.e., the situation at a point x = a at which the
function fails to be continuous, as per the following definition.

Definition A function y = f(x) is defined to be continuous at x = a if given
any ǫ > 0 there exists δ > 0 such that |f(x)−f(a)| < ǫ whenever |x−a| < δ.

This says that f(x) will be arbitrarily close to f(a) when x is sufficiently
close to a. In the example h(x) above, note that, for a = 1 and ǫ = 1/2, there
does not exist δ > 0 such that if x lies within δ of 1 then h(x) will lie within
1/2 of h(1) = 1; for as x approaches 1 from above, all values of h(x) are 2.

The function

h1(x) =

{

x, for x < 1

2, for x ≥ 1

has the same graph as h(x) except at x = 1. We could assign f(1) to be some
other number, as in

h2(x) =







x, for x < 1

3, for x = 1

2, for x > 1,

which has the graph

x

y

y = h2(x)

which again has a discontinuity at x = 1. It is not hard to prove that there
is, in fact, no way to reasign h(1), leaving all other values of h unchanged,
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in such a way that h is continuous at x = 1.

A rough interpretation of a discontinuity is a “jump” in the graph. (This is
not precise mathematical terminology, but it serves us pretty well intuitively.)
A function which is continuous on an interval I is one whose graph has no
“jumps” for any x ∈ I.

Periodic Functions. A function f(x) whose domain is all of R is called
periodic if there is a positive number P such that for all x ∈ R, f(x + P ) =
f(x). This means that the behavior of the function is completely determined
by its behavior on the half-open interval [0, P ) (or on any half-open interval
of length P ).

P 2P

The number P is called the period of the function.

Example. The functions y = sin x and y = cos x are periodic of period 2π.

Any function f(x) defined on the interval [0, P ) can be extended (uniquely)
to a periodic function g(x) of period P whose domain is all of R. This is done
by setting g(x) = f(x−nP ) for x ∈ [nP, (n+1)P ) for all integers n. We will
refer to this procedure as “extending from [0, P ) to R by periodicity”.

Effect of Shifting and Stretching on Periodicity. If y = f(x) is a
periodic function with period P , then the vertical and horizontal shifts y =
f(x) + c and y = f(x − c), for c ∈ R are also periodic of period P , as is the
vertical stretch y = cf(x). However the horizontal stretch y = f(x/c) will
have period cP . So the effect of stretching horizontally by a factor of c is to
divide the the frequency of f(x) by c. The proofs of these assertions will be
left as an exercise.
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Shifting and Stretching Sine and Cosine. The two trigonometric func-
tions y = sin x and y = cos x play a central role in the remaining discussion,
and they are related as follows: The graph of y = cos x is obtained by shifting
the graph of y = sin x to the left by c = π

2
. This is because the sine and cosine

funtions have the relationship

cos x = sin
(

x +
π

2

)

,

which is a special case of the “summation formula”

sin(α + β) = sin α cos β + cos α sin β . (10.1)

Note that the former equation is obtained from the latter by setting α = x
and β = π

2
, since cos π

2
= 0 and sin π

2
= 1.

More generally, if we treat 10.1 as a functional equation by replacing α
by the independent variable x and letting β be some fixed number (we might
wish to think of β as being an angle measured in radians), we have

sin(x + β) = cos β sin x + sin β cos x . (10.2)

The numbers cos β and sin β, are the coordinates of the point Q on the unit
circle (i.e., the circle of radius one) centered at the origin, such that the arc
length counterclockwise along the circle from (1, 0) to Q is β.

Let k, d ∈ R with d ≥ 0. Replacing x by kx in 10.2 and multiplying both
sides of the above equation by d yields the equation of the function g(x)
obtained by starting with f(x) = sin x, shifting to the left by β, compressing
horizontally by a factor of k (i.e., stretching by 1/k), and stretching vertically
by a factor of d. The resulting general transformation of sin x is:

g(x) = d sin(kx + β) = d (cosβ sin kx + sin β cos kx) (10.3)

Now let us consider an arbitrary function of the form

h(x) = A sin kx + B cos kx , (10.4)

where A, B ∈ R are any numbers. The point (A, B) has distance
√

A2 + B2

from the origin. If A and B are not both zero, then letting

a =
A√

A2 + B2
, b =

B√
A2 + B2

,
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the point (a, b) has distance 1 from the origin, hence lies on the unit circle
centered at the origin. Thus there is an angle β for which a = cos β, b = sin β,
and letting d =

√
A2 + B2 we have

h(x) = d (a sin kx + b cos kx)

= d (cos β sin kx + sin β cos kx)

= d sin(kx + β) .

Therefore h(x) is a transformation of sin x having the form 10.3, where d =√
A2 + B2. The angle β is called the phase shift, and the number d ≥ 0 is

the amplitude.

Example. Consider the function h(x) = 3 sin x + 2 cos x. We have A = 3,
B = 2, d =

√
32 + 22 =

√
13, a = 3√

13
, and b = 2√

13
. The angle β is an acute

angle (since the point (3, 2) lies in the first quadrant, so β can be found on
a calculater by taking arcsin 2√

13
≈ 0.588. Thus we have

h(x) =
√

13 (
3√
13

sin x +
2√
13

cos x)

=
√

13 (cosβ sin x + sin β cos x)

=
√

13 sin(x + β) ,

where β ≈ 0.588. The amplitude is
√

13 and the phase shift is β ≈ 0.588.

Vibrations. We will use the term vibration to mean an oscillation having
a pattern which repeats every interval of P units of time. The frequency of
the vibration, i.e., the number of repetitions of its pattern per unit of time,
is 1/P . For our purposes, time will be measured in seconds. If we realize a
vibration as the up and down motion of a point, the vibration is given by
a function y = f(t) where y is the position of the particle at time t. The
function will be periodic,the period being the number P above.

Vibrating motion can arise from the strings of a violin, a column of air
inside a trumpet, of the human vocal cords. The vibration is transmitted
through the air by contraction and expansion (This is called a sound wave.)
and received by the human ear when the ear drum is set in motion, vibrating
in the same pattern as the vibrating object. The brain interprets the vibration
as a musical tone. If the vibration has period P , measured in seconds, then
the pitch, or frequency, of the tone will be F = 1/P Hz.
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Musical Tones and Periodic Functions. Given any periodic function
y = f(t) of period P , we can contemplate an oscillating object whose position
at time t is f(t) and ask what is the sound of such a vibration. We would
expect the pitch of the tone to be 1/P Hz, but we wish to investigate what
other aspects of y = f(t) determine the character, or timbre, of the sound
we are hearing.

If a function y = f(t) did in fact represent the position of an object,
we would expect the function f(t) to be continuous. This is based on the
supposition that the objects position does not “jump” instantly. Although
this is indeed a reflection of reality, our discussion will nevertheless associate
a vibration with any periodic function y = f(t) of period P ∈ R+ satisfying
the following more general properties:

1. f has only finitely many discontinuities on [0, P ).

2. f is bounded, i.e., there are numbers b, B ∈ R such that for all t ∈ R,
b < f(t) < B.

We interpret the discontinuities as moments at which the vibrating object’s
position changes very quickly, so that the transition from one location to
another seems instantaneous. This exemplifies the fact that mathematics
presents models of physical phenomena, not an exact representations.

Suppose y = f(t) is a periodic function, with period P , satisfying the
above two conditions. As described above, f(t) is associated to a tone of
pitch (frequency) F = 1/P . According to our observations about the effect
of shifting on periodicity, the pitch is not changed if we alter f(t) by a
horizontal shift. Since such a shift can be thought of as a delay, we would
not expect it to affect the timbre of the tone, and in fact it does not. The
vertical shift describes a motion with altered amplitude, but the same pitch
and the same basic “personality”. Observation confirms that such a stretch
adjusts the loudness, with very little effect, if any, on the timbre of the tone.
The horizontal compression y = f(ct) changes the period to P/c, hence the
pitch to 1/(P/c) = c/P = cF . So the effect of compressing horizontally by a
factor of c is to multiply the frequency of f(t) by c.

Effect of Horizontal Stretching on Pitch. The final observation above
tells us how to apply a horizontal compression to f(t) to achieve any desired
pitch (frequency) r. Suppose the period P is given in seconds. We want
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r = cF = c
P
, which gives c = rP . Thus the function

y = f(rP t)

represents a tone having frequency r cycles per second, i.e., r Hz.

Example. Suppose y = sin t gives motion in seconds. Here P = 2π, so the
frequency is 1/2π Hz (which is way below the threshold of human audibility).
Let us adjust the pitch to give A4, tuned to r = 440 Hz. Accordingly we write
y = sin(rP t), i.e.,

y = sin(880πt) .

The tone given by a sine function as above is sometimes called a “pure tone”.
It is a nondescript hum, very similar to the tone produced by a tuning fork.

Fourier Theory. We will describe how all periodic functions having reason-
ably good behavior can be written in terms of the functions sin t and cos t.
This is a fundamental result of harmonic analysis, more specifically Fourier
theory, which is based on work of the French mathematician and physicist
Joseph Fourier (1768-1830). We first make the following observations.

The first is that if f(t) and g(t) are two functions which are periodic
of period P , then so is (f + g)(t), which is defined as f(t) + g(t). This is
elementary: (f + g)(t + P ) = f(t + P ) + g(t + P ) = f(t) + g(t) = (f + g)(t).
More generally, one sees that f1(t), . . . , fn(t) are periodic of period P then
so is

∑n
k=1 fk(t).

Secondly, suppose f(t) is periodic of period P , and k ∈ Z+. As we have
seen, the function f(kt) has as its graph the graph of f(t) compressed hor-
izontally by a compression factor of k, and it has period P/k. However, it
also has period P , since f(k(t + P )) = f(kt + kP ) = f(kt). Obviously the
function af(kt), for any a ∈ R, is also periodic of period P . Therefore a
sum

∑n
k=1 akf(kt), where a1, . . . , an ∈ R, is again periodic of period P . In

particular, a sum
∑n

k=1 ak sin(kt) has period 2π.

The following theorem, basic to harmonic analysis, entails two concepts
from calculus which go well beyond the scope of this course: the derivative
and the infinite summation.

Theorem Suppose f(t) is periodic of period 2π which is bounded and has a
bounded continuous derivative at all but finitely many points in [0, 2π). Then
there is a real number C and sequences of real numbers A1, A2, A3 . . . and
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B1, B2, B3 . . . such that, for all t at which f(t) is continuous we have f(t)
represented by the convergent sum

f(t) = C +

∞∑

k=1

[Ak sin(kt) + Bk cos(kt)] . (10.5)

Note that there is a condition on f(t) beyond the conditions 1 and 2
stated earlier in this chapter. It involves the concept of derivitive, which one
learns in calculus. The condition roughly says that, away from finitely many
points, the graph of f(t) is smooth and that it doesn’t slope up or down too
much.

The real numbers whose existence is asserted in the above theorem are
called Fourier coefficients. The infinite summation 10.5, called the Fourier
series for f , is based on the notions of limit and convergence, also from
calculus. With the proper definitions and development, it becomes possible
for an infinite sum to have a limit, i.e., to “add up” (converge) to a number.
An example is the sum

∑∞
k=0

1
2k = 1 + 1

2
+ 1

4
+ 1

8
+ · · · , which has 2 as its

limit. This is the same sum as formula (2.2) from Chapter 2, encountered in
our discussion of dotted notes.

This moral of the story told in the above theorem is that well-behaved
periodic functions can be approximated by a series of multiples of the sine and
cosine functions. There is more to the story, which, again, can be understood
by anyone familiar with calculus: The coefficients in formula 10.5 are uniquely
determined by the integrals below.

C =
1

2π

∫ 2π

0

f(t) dt

Ak =
1

π

∫ 2π

0

sin(kt)f(t) dt

Bk =
1

π

∫ 2π

0

cos(kt)f(t) dt

(10.6)

If g(t) is a function of arbitrary period P , then g( P
2π

t) has period 2π,
hence we have

g

(
P

2π
t

)

= C +

∞∑

k=1

[Ak sin(kt) + Bk cos(kt)]
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by the theorem. Recovering g(t) by replacing t by 2πt
P

in the above, we get
the Fourier series for an arbitrary function of period P , satisfying the other
hypotheses of the theorem:

g(t) = C +

∞∑

k=1

[

Ak sin
2πkt

P
+ Bk cos

2πkt

P

]

(10.7)

Harmonics and Overtones. Associating the function g(t) having period
P as above with a musical tone of pitch F = 1/P , let us note that

g(t) = C +
∞∑

k=1

[Ak sin(2πFkt) + Bk cos(2πFkt)] .

Each summand Ak sin(2πFkt)+Bk cos(2πFkt) in 10.7 has the form 10.4, and
therefore represents a transformation of sin(2πFkt) which can be written in
the form 10.3 as

dk [cos βk sin(2πFkt) + sin βk cos(2πFkt)] = dk sin(2πFkt + βk) ,

where

dk =
√

A2
k + B2

k, cos βk =
Ak

dk

, sin βk =
Bk

dk

(provided Ak and Bk are not both zero). Hence we have

g(t) = C +

∞∑

k=1

dk sin(2πFkt + βk) (10.8)

The kth summand dk sin(2πFkt + βk) is obtained from sin t via shifting
by βk (the kth phase shift), compressing horizontally by a factor of k and
stretching vertically by a factor of dk (the kth amplitude). This function
has the same basic sound (pitch and timbre) as sin(2πkFt), with a volume
adjustment resulting from the amplitude dk. It is called the kth harmonic
of the function g(t). For k ≥ 1 it is also called the (k − 1)th overtone of
g(t). When isolated, this harmonic gives the pitch kF , so the sequence of
pitches associated to the harmonics gives the sequence of integer ratios with
the fundamental frequency F . These are the intervals discussed in Chapter
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9; recall that is we take F2 as the fundamental (first harmonic), the first 13
harmonics are approximated on the keyboard as follows:

ăIG
1

ˇ
2

ˇ
3

ˇ 4

ˇ
5

ˇ
6

ˇ
7

2ˇ
8

ˇ
9

ˇ
10

ˇ
11

4ˇ

12

ˇ

13

2ˇ

For a given fundamental frequency F , the infinite sequence of pitches

F, 2F, 3F, 4F, 5F, . . .

is called it’s overtone series.

For a given pitch, it is the relative sizes of the (non-negative) amplitudes
d1, d2, d3, . . . that determines the timbre, or “personality”, of a sustained tone,
allowing us to distinguish between different musical voices and instruments.
We can think of dk as the “weight” or “degree of presence” of the kth harmonic
in the sound represented by g(t). The timbre of the tone seems to depend on
this sequence alone, independent of the sequence of phase shifts β1, β2, β3, . . .,
which certainly affect the shape of the graph of g(t), but not the sound.

Overtones (harmonics) are generally not perceived by the ear as pitches;
rather the totality of those overtones that fall into audible range are heard
as an integrated single tone, with harmonics determining the timbre as ex-
plained above. However there are times when overtones can actually be heard
as pitches. Overtone singing is a type of singing in which the singer manipu-
lates the resonating cavities in the mouth by moving the tongue and jaw so
as to isolate specific overtones one at a time. The isolated overtone then be-
comes clearly audible. While holding a constant fundamental pitch the singer
can thereby “play a tune” with the overtones.

Another situation where overtones can become audible occurs when a
certain pitch appears as a reinforced overtone, i.e., is an overtone of two or
more notes in a well-tuned chord. For example, suppose a chord has root C3

and fifth G3. Note, then, that G4 is the third harmonic of the root1 and is
the second harmonic of the fifth.

1Actually it is off by about two cents, as per the discussion in Chapter 9.
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ăIG
G4, the small note, appears in the overtone series of both C3 and G3.

ˇˇ
ˇ

Since G3 is reinforced, it is sometimes heard as a pitch. Its audibility is
even more likely if it lies within a formant (a term to be explained later in
the chapter) for the vowel being sung or the instruments playing the chord.
Singers of a cappella music often say the chord “rings” when this phenomenon
is experienced.

Example: the Square Wave. To illustrate the use of the theorem, and
equations 10.6, 10.7, and 10.8, to calculate harmonics of a tone, we consider
a so-called “square wave”, the periodic function defined on the interval [0, 2π)
by

s(t) =

{

1, for 0 ≤ t < π

−1, for π ≤ t < 2π

and extended by periodicity to a function whose domain is R. The graph of
one period, over [0, 2π), appears below.

2ππ

y = s(t)

This waveform, encountered in electronics and signal processing and available
in most synthesizers, produces a distinctive timbre that vaguely resembles the
sound of a clarinet. The function satisfies the hypothesis of the theorem, so
we wish to use 10.6 to calculate the coefficients C, Ak, and Bk that appear
in its Fourier series.

At this point we will fall back on the common interpretation of the integral
which asserts that for a well-behaved function y = f(x) the integral

∫ b

a
f(t) dt
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gives the area enclosed between the graph of f(x) and the x-axis between
the vertical lines x = a and x = b, with the caveat that area below the axis
assumes negative value. Though not mathematically rigorous, this informal
realization of the integral will serve here as a working definition, as it will
allow the reader who is not familiar with calculus to follow the discussion.

According to 10.6 we have C = 1
2π

∫ 2π

0
s(t) dt. It now becomes apparent

from the graph of s(t) that
∫ 2π

0
s(t) dt = 0, since the rectangle enclosed

above the t-axis between 0 and π has the same area as the one below the
axis between π and 2π. Hence C = 0.

Now let us consider the coefficients Bk = 1
π

∫ 2π

0
cos(kt)s(t) dt (again from

10.6). First, let’s observe that, for k ∈ Z, the graph of y = cos(kt) is sym-
metric around t = π, in other words cos(k(π − t)) = cos(k(π + t)). This can
be surmised from the graph, exhibited below for k = 2 and k = 5,

2ππ

y = cos 2t

2ππ

y = cos 5t

and it follows easily from the summation formula:

cos(α + β) = cos α cos β − sin α sin β (10.9)

(The derivation using this formula will appear as an exercise at the end of
this chapter.) Consequently we see that

∫ π

0

cos(kt) dt =

∫ 2π

π

cos(kt) dt . (10.10)

Appealing to basic properties of the integral which are apparent from our
working definition, and recalling the definition of s(t), we have

∫ 2π

0

cos(kt)s(t) dt =

∫ π

0

cos(kt)s(t) dt +

∫ 2π

π

cos(kt)s(t) dt

=

∫ π

0

cos(kt) · 1 dt +

∫ 2π

π

cos(kt) · (−1) dt

=

∫ π

0

cos(kt) dt −
∫ 2π

π

cos(kt) dt

= 0
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the last equality owing to 10.10. This shows Bk = 0.

In order to evaluate Ak = 1
π

∫ 2π

0
sin(kt)s(t) dt, we make some observations

about the behavior of sin(kt) on the interval [0, 2π]. Specifically, we want to
see how its graph on [0, π] compares to its graph on [π, 2π]. Now sin(kt)
has period 2π/k, each period being a horizontal compression the graph of
y = sin t over the interval [0, 2π], thus comprising an “upper lobe” and a
“lower lobe”, each enclosing the same amount of area between the graph and
the t-axis. From this it follows that the integral of sin(kt) over any one period,
or over any number of complete periods, is zero. Moreover, the point t = π
lies either at the point between two adjacent periods or at the midpoint of a
period, depending on whether k is even or odd, respectively.

2ππ

y = sin 2t

2ππ

y = sin 5t

In the case k is even (see k = 2 above), the graph looks exactly the
same on both intervals, thus the integral over both intervals is the same
(and in fact equal to zero, since each period has the same amount of area

below the t-axis as above). Therefore
∫ 2π

0
sin(kt)s(t) dt =

∫ π

0
sin(kt)s(t) dt +

∫ 2π

π
sin(kt)s(t) dt =

∫ π

0
sin(kt) · 1 dt +

∫ 2π

π
sin(kt) · (−1) dt =

∫ π

0
sin(kt) dt −

∫ 2π

π
sin(kt) dt = 0 − 0 = 0. Hence we have Ak = 0 when k is even.

When k is odd (see k = 5 above), write k = 2n + 1 and note that the
interval [0, π] contains n complete periods, plus the upper lobe of another;
the interval [π, 2π] has the lower lobe of the (n + 1)st period followed by n
complete periods. Since the integral over complete periods is zero we see then
that

∫ π

0
sin(kt) dt = R and

∫ 2π

π
sin(kt) dt = −R, where R is the area under
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one upper lobe. Therefore

∫ 2π

0

sin(kt)s(t) dt =

∫ π

0

sin(kt)s(t) dt +

∫ 2π

π

sin(kt)s(t) dt

=

∫ π

0

sin(kt) · 1 dt +

∫ 2π

π

sin(kt) · (−1) dt

=

∫ π

0

sin(kt) dt −
∫ 2π

π

sin(kt) dt

= R − (−R) = 2R

(10.11)

and we are reduced to evaluating R. We appeal to another intuitive maxim:
When a region is stretched horizontally by a factor of a the area of the
stretched region equals the area of the original region multiplied by a. Ac-
cordingly,

R =
1

k

∫ π

0

sin t dt (10.12)

and here, alas, we appeal to the Fundamental Theorem of Calculus for one
brief calculation and ask the general reader’s forbearance:

∫ π

0

sin t dt = − cos t

∣
∣
∣
∣

π

0

= − cos π + cos 0 = −(−1) + 1 = 2 . (10.13)

This says the area under one upper lobe of the standard sine (or cosine) curve
is 2. Using 10.11, 10.12, and 10.13 we get

Ak =
1

π

∫ 2π

0

sin(kt)s(t) dt =
1

π
2R =

4

kπ

for k odd.
To summarize, we have shown:

C = 0, Bk = 0 for all k, Ak =

{

0, for k even
4

kπ
, for k odd

Writing the odd positive integers as k = 2n+1 for n = 0, 1, 2, . . . and pulling
the common factor 4/π to the left, the summation 10.7 for the function s(t)
reads:

s(t) =
4

π

∞∑

n=0

1

2n + 1
sin((2n + 1)t) (10.14)
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Note that the absence of cosines in the series says that the phase shifts βk

are all zero and the amplitudes dk are 0 for k even, 4/kπ for k odd.
It is interesting (and fun!) to “watch” the summation 10.14 converge by

plotting the graph of the truncated series 4
π

∑N
n=0

1
2n+1

sin((2n+1)t) for larger
and larger N . Note how the graphs below increasingly resemble the graph of
s(t).

2π

N = 0

2π

N = 3

2π

N = 8

2π

N = 15

We should remark that all but finitely many overtones lie outside the range
of human audibility. Hence some truncation of the Fourier series suffices to
represent the audible sound.

For reasons rooted in physics of sound, the clarinet also has only odd
harmonics, which explains the faint resemblance of the its sound to that of
the square wave.

Formants. Suppose a waveform is given by equation (10.8), and suppose
we vary only the pitch F , keeping the numbers dk fixed. (We won’t worry
about the numbers βk since they don’t contribute much to the character of
the sound.) Then the amplitude of each harmonic remains unchanged. This
would be the case if we sounded the square wave at different frequencies. The
weights of the harmonics are not affected.

However this is not what happens when a musical instrument or a singer
changes pitch. Rather, the harmonics that fall within certain frequency ranges
will consistently have larger weights than those which do not. These frequency
ranges, called formants, depend only on the musical instrument being played
or the human vowel sound being sung; they remain unchanged as the pitch
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F varies. Thus each weight dk will change from note to note, depending on
whether the kth harmonic lies within one of these formants.

This explains why speeding up or slowing down a recording distorts the
sound beyond simply changing the pitch. When a recorded tone is played
at a different rate from which it was recorded, the sound wave is simply
stretched or compressed over time, i.e., the frequency F is changed, with
all other parameters in (10.8) remaining unaltered. Thus the formants are
not preserved, but rather shifted along with F .2 Speeding up recorded music
produces the familiar “chipmunk effect.” Music which is slowed down sounds
dark and muddy. In either case the character of the music is changed in a
rather comical way.

Musical sounds tend to have two or three formants. These formants are
created by the resonating chambers inside the instrument or mouth of the
singer. A chamber favors a certain frequency range, determined by its size
and shape; frequencies within that range are amplified.

As examples, we will consider the three vowel sounds as typically spo-
ken by Americans. The vowel oo (as in “food”) has three formants centered
respectively near 310 Hz, 870 Hz, and 2250 Hz. The vowel ah (as in “fa-
ther”) has formants around 710 Hz, 1100 Hz, and 2640 Hz. The vowel ee
(as in “feed”) has formants at 280 Hz, 2250 Hz, and 2900 Hz. The graphs
which plot loudness (vertical axis) against pitch (in Hz) for these vowels look
something like this:

1000 2000 3000 4000

formants for the oo vowel

2Modern studio editing now allows recorded tones to be transposed (i.e., pitch altered)
in a way that keeps the formants intact, thus preserving the character of the sound. This
process is highly sophisticated and represents a great triumph in signal analysis technology.
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1000 2000 3000 4000

formants for the ah vowel

1000 2000 3000 4000

formants for the ee vowel

We often use the word “bright” to describe sounds with one or more promi-
nent high formants, and “dark” for sounds whose formants all lie low. Note
that the ee vowel has higher second and third upper formants than the other
two, which accounts for its relatively bright sound. Note also that a formant
will have no effect on the timbre if the fundamental pitch being sung lies
above that formant; hence if a soprano sings A5 (880 Hz) on an oo vowel, the
lowest formant, centered around 310 Hz, has no harmonics to amplify.

Musical instruments also possess characterizing formants. For example,
the clarinet has formants in the ranges 1500-1700 Hz, and the trumpet has
a formant in the range 1200-1400 Hz and another centered narrowly around
2500 Hz.

Finally we should acknowledge that the term “loudness” used above is
subjective and difficult to quantify, as it varies from person to person. It is
not directly proportional to mere amplitude. Physics attempts to measure it
as a function of “sound pressure”, measured in decibels, as well as frequency.

Exercises

1. Prove that if y = f(t) has period P , then so does y = f(t) + c, y =
f(t − c), and y = cf(t), for any c ∈ R. Prove that f(t/c) (c 6= 0) has
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period cP .

2. Show that if a periodic function f(t) has period P , then it also has
period nP for any positive integer n. Note that the determination of
the Fourier coefficients C, Ak, and Bk depend on the choice of period
for f(t) (see equation (7)). How do these coefficients for f as a function
of period kP compare to those obtained from viewing f as a function
of period P ?

3. Suppose the function y = f(t) is the periodic function of period P
corresponding to a musical tone, and suppose the graph of y = f(t) is:

Pc

c

For each of the functions below, sketch its graph and explain how its
associated tone compares that of f(t).

(a) y = 1
2
f(t) (b) y = f(2t)

(c) y = f(t) + c (d) y = f(t + c)

4. Find the value α for which the pitch associated to the periodic function
y = sin(αt), where t is time in seconds, is:

(a) middle C (b) A♭
2 (c) D♯

6

5. Find the period, frequency, amplitude, and phase shift for these func-
tions, and express each in the form A sin(αt) + B cos(αt)

(a) f(t) = 5 sin(30πt + π
4
)

(b) g(t) =
√

2 sin(800t + π)

(c) h(t) = −5
3
sin(2000t + arcsin(0.7))
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6. Find the period, frequency, amplitude, and phase shift for these func-
tions, and express each in the form d sin(αt + β) :

(a) f(t) = 4 sin(300t) + 5 cos(300t)

(b) g(t) = 2 sin(450πt) − 2 cos(450πt)

(c) h(t) = − sin(1500πt) + 3 cos(1500πt)

7. Suppose musical tone with pitch B4 has harmonics 1, 3, 5 only, with
amplitudes 1, 1

9
, 1

25
, respectively, and phase shifts 0, π, −π

2
, respectively.

Suppose also that the vertical shift C is 0. Write its Fourier series in
the form

∑
[Ak sin(kt) + Bk cos(kt)].

8. Verify the formula cos(k(π − x)) = cos(k(π + x)) using the formula
10.9. Recall this formula was used in showing the Fourier coefficients
Bk for the square wave function are all zero.

9. This is a challenging exercise. Let q(t) be defined by q(t) = 1
π
t − 1 on

the interval [0, 2π), extended to a periodic function on R by periodicity.
This a sawtooth wave. It’s graph on [0, 2π) is:

2ππ

y = q(t)

The sound of this waveform is a harsh buzz. Show that

q(t) = −2

π

∞∑

k=1

1

k
sin(kt) .

Hint: Mimic the computation for the square wave. You will need the
formula ∫ 2π

0

t sin(kt) dt = −2π

k
,
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which calculus students should verify using integration by parts.

10. In the spirit of the last exercise, find the Fourier series for the triangle
wave given on [0, 2π) by

r(t) =

{
2
π
t − 1, for 0 ≤ t < π

− 2
π
t + 3, for π ≤ t < 2π

which looks like

2ππ

y = r(t)

You should find that the triangle wave, like the square wave, has only
odd harmonics. However the weights of the higher harmonics diminish
faster than those of the square wave, hence its sound is less harsh.

11. We saw that the square wave had only odd harmonics. What can you
say about the periodicity of a waveform that has only even harmonics?
This relates to Exercise 2.

12. The human ee vowel has a formant centered at 2900 Hz. What pitch
should one sing in order for the fifth harmonic to be maximally ampli-
fied by this formant?

13. Two instruments play the pitches A2 and E3, making the interval of a
keyboard fifth. Suppose they are playing the same kind of instrument,
and that the instrument has a formant centered at 3000 Hz. Suppose
the formant amplifies pitches within 400 Hz of its center. Identify the
harmonics produced by each instrument which will be amplified by
the formant, and give their frequencies. How many pairs of these fre-
quencies are almost aligned? Could this “near alignment” be perfected
by slightly adjusting the interval? Might this induce the performers to
make such an adjustment, if the instrument permitted?



Chapter 11

The Rational Numbers As
Musical Intervals

The rational numbers Q are a subset of R containing Z, and we also have the
containments Z+ ⊂ Q+ ⊂ R+. We have noted that elements of R+ are in 1-1
correspondence with the set of musical intervals, and that this gives a group
isomorphism from the group of intervals with (R+, · ). In the last chapter we
examined those intervals which correspond to positive integers, i.e., lie in the
monoid (Z+, · ). Now we will consider those intervals which correspond to
elements of the subgroup (Q+, · ).

It has long been acknowledged that two pitches sounded simultaneously
create an effect that we are prone to call “harmonious” or “consonant” when
the ratio of their frequencies can be expressed as a ratio n : m where m and
n are small positive integers. The smaller the integers, the more consonant
the interval. We refer to such intervals as just intervals.

Rational Intervals. To say that an interval I is given by a ratio n : m of
positive integers is to say that it corresponds to a positive rational number.

Definition An interval I will be called rational if its corresponding ratio
lies in Q+. Otherwise we say I is an irrational interval.

In ancient times such intervals could be accurately created with a vibrat-
ing string of length L using techiques of plane geometry. Any interval in the
real number line can be divided into n equal subintervals using compass and
rule, as shown below for n = 5 and the interval [a, b].

125
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a b

If n
m

≥ 1, its rational interval is obtained with the strings fundamental fre-
quency by fretting the string at distance m

n
· L (≤ L) from one end.

The intervals of equal temperament, however, were not so accessible before
the development of relatively modern techniques. For example the semitone’s
ratio of 21/12 would necessitate, as we have seen, finding the distance 2−1/12L
- a technique not accessible to ancient mathematicians.

Unique Factorization of Positive Rational Numbers. The following
theorem about factorization in Q+ follows from the analogous theorem about
Z+ from Chapter 7.

Theorem Let x ∈ Q+. Then x can be factored as

x = pα1

1 pα2

2 · · · pαr

r

where r ≥ 0, p1, p2 . . . , pr are distinct primes, and α1, α2, . . . , αr ∈ Z, 6= 0.
Moreover, this factorization is unique, meaning that if x = qβ1

1 qβ2

2 · · · qβt

t is
another such factorization, then t = r and after rearranging we have p1 =
q1, p2 = q2, . . . , pr = qr.

Note that this statement differs from the analogous theorem about Z

in that it allows the exponents α1, . . . , αr to be non-zero integers, not just
positive ones. The proof of this theorem will be an exercise.

Given x = pα1

1 · · · pαr
r as in the theorem, we may, without loss of generality,

assume that α1, . . . , αi are positive and αi+1, . . . , αr are negative. Set s = r−i,
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and let βj = −αi+j and qj = pi+j for j = 1, . . . , s. We have

x =
pα1

1 pα2

2 · · · pαi

i

qβ1

1 qβ2

2 · · · qβs
s

with p1, . . . , pi, q1, . . . , qs being distinct primes and α1, . . . , αi, β1, . . . , βs positive
integers. We can easily write an element of Q in this form provided we can
find the prime factorization of its numerator and denominator. The fraction
x = 1,222,452

11,180,400
seems intractible, but a little work with small primes gives the

factorizations 1,222,452 = 11 · 73 · 34 · 22, 11,180,400 = 113 · 7 · 52 · 3 · 24. Thus,
by cancellation, we have

x =
72 · 33

112 · 52 · 22
.

We will seek to understand rational intervals by the configuration of prime
numbers p1, . . . , pi, q1, . . . , qs which appear in their factorization, as above.
We will first focus on some just intervals which are less than an octave,
comparing them to their keyboard approximations.

We begin considering some cases where the denominator is a power of
2, i.e. rational intervals having ratio n/2β, where n is odd. In this case, the
interval is the composition of the integral interval n with −β octaves. For
example:

Just Fifth. Consider the interval given by 3
2
∈ Q+. This is the integral

interval interval 3 lowered by 1 octave. We noted in Chapter 8 that the
interval 3 is ≈ 1.96 cents sharp of the keyboard’s octave plus a fifth. Hence
3
2

is sharp of a keyboard fifth by this same amount. (Or we can calculate
directly: 1200 log2

3
2
≈ 701.96. The keyboards fifth is 700 cents.) The rational

interval given by 3
2

is called the just fifth.

G
approximation of 3 (≈ 2 cents flat)

¯
¯ G

approximation of 3
2

(≈ 2 cents flat)

¯¯

Just Major Third. The interval 5
4

is the integral interval 5 minus two
octaves. Recall that 5 is about 14 cents less than the keyboard’s two octaves
plus a major third. Hence 5

4
is the same amount flat of the keyboard major

third, and is called the just major third.
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G
approximation of 5 (≈ 14 cents sharp)

¯
¯

G
approximation of 5

4
(≈ 14 cents sharp)

¯¯

Greater Whole Tone (Pythagorean Whole Tone). Since 3 is approxi-
mately one octave plus a fifth, the interval 9

8
is twice that, lowered by three

octaves: 9
8

= (3
2
)2 · 1

2
. This gives something close to the keyboard’s step. The

calculation 1200 log2
9
8
≈ 203.91 shows that this just interval is about 4 cents

sharp of a step. We refrain from calling this interval the “just step” or “just
whole tone” because we will soon encounter another just interval that is well
approximated by the keyboard’s one step. Instead, we will refer to this in-
terval as the greater whole tone. It is also called the Pythagorean whole tone,
for a reason that will be given in Chapter 12.

Now we will investigate some intervals having ratio n/3β, where n is not
divisible by 3.

Just Fourth. The most basic of these is the interval given by the ratio 4
3
.

Note that this interval, call it I, is complimentary to the just fifth, since
4
3
· 3

2
= 2. This says I is given additively as one octave minus a just fifth,

which means it is about 2 cents flat of a keyboard fourth. We call I the just
fourth.

G
approximation of 4

3
(≈ 2 cents sharp)

¯¯

Lesser Whole Tone. The ratio 10
9

gives another interval approximated by
the keyboard step. We have 1200 log2

10
9
≈ 182.40, showing this interval to

be about 18 cents flat of the keyboard’s step. This interval will be called the
lesser whole tone. Observe that the keyboard’s step lies between the lesser
and greater whole tones, closer to the latter, as indicated on the scale of cents
below:
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0 100 200 300

182.40

203.91

comma of Didymus

The interval between the lesser and greater whole tones has a ratio of 9
8
÷ 10

9
=

81
80

which is measured in cents by 1200 log2
81
80

≈ 21.50. This is called the
comma of Didymus.

Just Major Sixth. The fraction 5
3

gives us an interval ≈ 884.36 measured
in cents. Since it is only about 16 cents flat of the keyboard major sixth, we
call it the just major sixth.

G
approximation of 5

3
(≈ 16 cents sharp)

¯¯

There are at least two common just intervals whose denominators involve
the prime number 5.

Just Minor Third. By virtue of the equality 3
2
÷ 5

4
= 6

5
, the ratio 6

5
gives

the interval I “between” the just major third and the just fifth, i.e., I is
(additively) a just fifth minus a just major third. The cents measurement
of 6

5
is 1200 log2

6
5
≈ 315.64, about 16 cents sharp of the keyboard’s minor

third. We call it the just minor third.

G
approximation of 6

5
(≈ 16 cents flat)

2̄̄

Just Semitone. We consider the fraction 16
15

= 23

3·5 . By virtue of the fact
that it has larger numerator and denominator than any of those previously
discussed, it gives an interval that might be considered “less just”, and which
one might expect to be less consonant. It is also the first ratio we have listed
whose denominator involves more than one prime. We have 1200 log2

16
15

≈
111.73, placing this interval about 12 cents sharp of the keyboard semitone.
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It is called the just semitone.

G
approximation of 16

15
(≈ 12 cents flat)

¯2 ¯

Septimal Intervals. All the just intervals above involve only the primes
2,3, and 5. (According to a definition that will be given in the next chapter,
these are 5-limit intervals.) The prime 7 introduces us to still more just
intervals, and these intervals are not so well approximated by 12-tone equal
temperament. Three examples are the septimal minor seventh, with ratio 7

4
,

its compliment the septimal whole tone, with ratio 8
7
, and the septimal minor

third, with ratio 7
6
. These intervals are sufficiently far away from keyboard

notes as to impart a texture that is sometimes called “blue”, or “soulful” to
music which employs them.

G
approximation of 7

4
(≈ 31 cents sharp)

2̄̄ G
approximation of 8

7
(≈ 31 cents flat)

¯ ¯

G
approximation of 7

6
(≈ 33 cents sharp)

2̄̄

Higher Primes. There is, in theory, an infinite list of higher primes to
consider (The infinitude of the set of primes will appear as an exercise.), but
in practice there is a limit to the audible range of an interval. The human ear
is able to listen to ratios up to about 1000, so there are indeed many audible
possibilities. Although the primes > 7 may be considered remote, they can
contribute intervals which have legitimate uses in music. These intervals,
unnamed for the most part, will be referred to as “exotic”. We often describe
them by using the prefixes sub- and super- before the names of keyboard
intervals.

An example is the exotic tritone with ratio 11
8
. The calculation 1200 log2

11
8
≈

551.32 shows this interval to be almost halfway between the keyboard’s fourth
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and tritone. Another is the exotic super-minor sixth given by 13
8
. It is about 41

cents sharp of the keyboard’s minor sixth, according to 1200 log2
13
8
≈ 840.53.

These intervals are quite strange to the ear.

By contrast, the next two primes 17 and 19 give near-keyboard intervals
as follows: A super-semitone is given by 17

16
, which is only about 5 cents sharp

of the keyboard’s semitone, and a sub-minor third is given by 19
16

, only 2
cents flat of the keyboard’s minor third. Note that these rational intervals
are better approximated by the keyboard than the just semitone and the just
minor third.

The Comma of Pythagoras. The Greek mathematician Pythagoras (c5̇40-
510 B.C.) believed that the perfection of the (3 : 2) fifth (what we now call
the just fifth) symbolized the perfection of the universe. Hence the tuning
of the scale to achieve just fifths is called Pythagorean tuning. Pythagoras
discovered that the iteration of twelve just fifths is almost the same as the
iteration of seven octaves. This is demonstrated by:

(
3

2

)12

=
312

212
=

531441

4096
≈ 129.75

27 = 128

The interval between these is

(
3
2

)12

27
=

312

219
=

531441

524228
≈ 1.01364 ,

which is measured in cents by

1200 log2

(
312

219

)

≈ 23.46 .

It is called the comma of Pythagoras.

This comma is the discrepancy we would get if we were to try to tune
up the 12-note scale with just fifths. We know that the tempered (keyboard)
fifth, iterated twelve times, gives us seven octaves. Thus if we let the circle
represent all intervals (additively) modulo 7 octaves, then a fifth will be
1/12th of the circle. Placing C at the top, we have:
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C
G

D

A

E

B
G♭

D♭
A♭

E♭

B♭

F

12-octave clock with tempered fifths

If we plot the 7-octave circle of fifths using just fifths, the twelve intervals
add up to slightly more than one rotation, wrapping around the clock and
ending up clockwise of the 12 o’clock position by precisely the comma of
Pythagoras, as shown below. Thus the tuning of C would be problematic.

C
G

D

A

E

B
G♭

D♭
A♭

E♭

B♭

F
C

7-octave clock with just fifths

This small but nonnegligible interval, not quite a quarter of a semitone, was
greatly disturbing to Pythagoras.

Irrationality of Equally-Tempered Intervals. We will now show that all
intervals between notes of the equally tempered scale, excepting iterations
of the octave, are irrational, that is, they correspond to ratios which are
irrational numbers, i.e., lie outside of Q. In fact, this holds even in non-
standard equally tempered scales.

Theorem Let I be an the interval between two notes in the chromatic n-
scale. If I is not the iteration of octaves (i.e., the ratio corresponding to I is
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not a power of 2), then I is an irrational interval.

Proof. Suppose I has ratio x ∈ Q+. The modular chromatic interval given
by I, which lies in Zn, has finite order, which says that n iterations of I gives
k octaves, for some positive integer n and some integer k. This says that
xn = 2k. We know that x possesses a unique factorizationx = pα1

1 pα2

2 · · · pαr
r

where r ≥ 0, p1, p2 . . . , pr are distinct primes, and α1, α2, . . . , αr ∈ Z, 6= 0.
Thus we have

xn = (pα1

1 pα2

2 · · · pαr

r )n = pnα1

1 pnα2

2 · · · pnαr

r = 2k .

The uniqueness of this expresssion says that 2 is the only prime in the set
of primes {p1, . . . , pr}. Therefore r = 1 and p1 = 2 (unless k = 0, in which
case I is the unison interval). Hence x = 2α1 , which says I is an iteration of
octaves.

This tells us that none of the intervals in any equally-tempered scale,
save multi-octaves, are just, and suggests that none should be considered
perfectly consonant. However, we have seen that the just intervals involving
small powers of the primes 2,3, and 5 have fairly close approximations in the
12-chromatic scale. For example, we have seen that the tempered fifth closely
approximates 3

2
, and the tempered major third gives a fair approximation of

5
4
. This likely explains why the 12-chromatic scale gained acceptance. In the

next chapter we will present some historical alternate methods of tuning the
scale in unequal temperament designed to render some just intervals with
precision, and discuss the advantages and limitations of such scales.

Justly Tuned Chords. We now observe that each rational interval is the
interval between two harmonics of a sustained tone. Namely the interval
ratio n : m, for m, n ∈ Z+, is the interval from the mth to the nth harmonic.
Moreover the harmonic series contains “just” representations of most of the
chords we discussed in Chapter 3.

A chord can be represented, with specified voicing, by writing a sequence
of positive ratios n1 : n2 : · · ·nk. This means the chord has k pitches and
the ratio between the ith and the (i+1)st pitch is ni. If the positive numbers
n1, . . . , nk are all “small” integers (“small” being undefined) we say the chord
is justly tuned. The smaller the integers in a chord’s ratios, the more “har-
monious”, or consonant, it sounds. Chords whose ratios are not, or cannot
be approximated by, small integers will sound “clashing”, or dissonant.
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Consider first the major chord. A just rendition of it comprises harmonics
4,5, and 6, i.e., the chord given by the ratios 4 : 5 : 6. Note that its third
and fifth are a just major third and a just fifth, respectively, above its root,
and that the interval between its third and fifth is a just minor third. The
same chord written with doubled root in the “tenth voicing” (meaning the
third is a tenth above the lowest root) can be realized as 2 : 3 : 4 : 5. The
keyboard approximations of these harmonics for F2 are written below in small
noteheads.

ğIG
harmonics 4,5,6 of F2

ˇ

ˇˇˇ ğIG
harmonics 2,3,4,5 of F2

ˇˇ
ˇ
ˇˇ

The presence of this chord in the lower harmonics surely explains why the
chord is so pleasing and so basic in music.

Just renderings of this and other chords discussed in Chapter 3 appear
“early” in the overtone series as follows:

major triad 4 : 5 : 6
seventh 4 : 5 : 6 : 7
half-diminished seventh 5 : 6 : 7 : 9
minor triad 10 : 12 : 15
minor seventh 10 : 12 : 15 : 18
major seventh 8 : 10 : 12 : 15

Obviously these tunings that cannot be achieved on a keyboard. However
with the human voice and with certain instruments, such as the violin, a
continuum of pitch is available so that the ear of the musician fine-tunes the
pitch. In these situations the singer/instrumentalist may be drawn toward
the more natural just tuning over the imperfection (and irrationality) of equal
temperament.

One tone that may sound annoyingly flat to some musicians is the sep-
timal seventh that appears in the just seventh chord listed above. As we
saw, it lies 31 cents below it’s keyboard approximation. However, it pro-
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duces a seventh chord that is laser-like in its perfect consonance. This low
seventh is often heard in blues, some jazz, and some a capella vocal styles
such as barbershop. A less consonant tuning of the seventh chord is given
by 20 : 25 : 30 : 36. Here the interval from root to seventh is 9 : 5, and
interval which is called the just minor seventh (as opposed to the septimal
minor seventh).

The harmonic (overtone) series also explains more complicated harmonies
such as those found in jazz. For example, the type of ninth chord shown below
has the just tuning 4 : 5 : 6 : 7 : 9.

G ¯¯2̄̄̄
Another example occurs in George Gershwin’s Rhapsody in Blue as the final
chord of this famous passage1:

ć
I

G
ˇffiˇ

Molto stentando

ˇˇ
ffiˇ

ˇffi ˇ

ˇˇ
ffi ˇ

ˇffi ˇ
ˇˇ
ffiˇ

ÐÐ̌
ffiˇ
ˇˇ
ffi
ˇ

´

7

ˇˇ

´
7
7 ˇˇ
ˇ
ĹĹ̌ffi

ˇ

ĆĆ
ˇˇ
ffiˇ

3

ˇffi ˇ
3

ˇˇ
ffiˇ

ˇffi ˇ
ˇˇ
ffiˇ

ŔŔ
Ť

ˇffi ˇ

ŔŔ
Ď

ˇˇ
ffi ˇ

ˇ ˇ
simile

ˇˇ ˇ

ˇ ˇ

ˇˇ ˇ

ˇ ˇ
ˇˇ ˇ

ÐÐ̌
ˇ
ˇˇˇ

´

7

ˇˇ

´
7
7 ˇˇ
ˇ
ĹĹ̌

ˇ

ĆĆ
ˇˇˇ

3

ˇ ˇ

3

ˇˇˇ

ˇ ˇ
ˇˇˇ

ŔŔ
ˇˇ

ŔŔ
ˇˇˇ

ˇ ˇ

ˇˇˇ

ˇ ˇ

ˇˇˇ

ˇ ˇ
ˇˇ ˇ

ÐÐ̌
ˇ
ˇˇˇ

ˇ ˇ

ˇˇˇ

ˇ ˇ
ˇˇˇ

ˇ ˇ
ˇˇˇ

ŁŁ
ˇˇ

ŁŁ
ˇˇˇ

ć
I

G

3

ˇ ˇ

3

ˇˇ ˇ

ˇ ˇ

ˇˇ ˇ

ŔŔ
ˇˇ

ŔŔ
ˇˇˇ

3

ˇˇ

3

ˇˇˇ

ˇˇ

ˇˇˇ
ĽĽ

ˇˇ

ĽĽ
ˇˇˇ

3

ˇ ˇ

3

ˇˇˇ

ˇ ˇ

ˇˇˇ

ĽĽ
ˇˇ

ĽĽ
ˇˇˇ

3

ˇ ˇ

3

ˇˇˇ

ˇ ˇ

ˇˇˇ

çç
ˇˇ

ˇˇˇ

3

ˇ ˇ

3

ˇˇˇ

ˇ ˇ
ˇˇˇ

ĽĽ
ˇˇ

ĽĽ
ˇˇˇ

3

ˇ ˇ

3

ˇˇˇ

ˇ ˇ

ˇˇ ˇ

ĽĽ
ˇˇ

ĽĽ
ˇˇˇ

3

ˇ ˇ

3

ˇˇˇ

ˇ ˇ

ˇˇˇ

ˇ ˇ

çç
ˇˇˇ

3

ˇ ˇ

3

ˇˇˇ

ˇ ˇ

ˇˇˇ

ĽĽ
ˇˇ P

O O

ĽĽ
ˇˇˇˇ

P
O O

2̌
2̨̌

ffiP
Ř

2̆2 ˘

ffiP2˘˘˘ ˘
P˜ ˘

9 ˘

P
9
9
˜˜ ˘˘˘ ˘

The striking six-note chord at the end can be tuned justly as 2 : 3 : 5 : 7 :

1This excerpt also contains an m on n pattern as discussed in Chapter 8. The melodic
(top) line repeats a sequence of eight notes: E5, F5, G5, G4, A4, B4, C5, D5. Beginning
with the seventh measure, the notes are played in triplets, creating a 3 on 8 pattern. The
double pattern is complete after 3×8 = 24 notes, which occupy measures 7-10, culminating
in the caesura and the final jazz chord.



136 CHAPTER 11. RATIONAL NUMBERS AS INTERVALS

9 : 11, whereupon all these notes occur as harmonics of E♭
2. Though the 7

and 11 are poorly approximated by equal temperament, the chord’s primal
appeal likely comes from its similarity to this just rendition.

The functionality of augmented and diminished seventh chords often plays
on their property of having equal intervals, hence no discernible root. The
theorem stated and proved earlier in this chapter shows that such equal parti-
tions of the octave are unachievable in just intonation; completely symmetric
chords can only be rendered using irrational temperament. Thus one might
argue that augmented and full diminished chords are best rendered in equal
temperament; perhaps they are even a result of equal temperament. This
accounts for their unstable character.

Exercises

1. For each of these rational intervals, find the 12-chromatic interval which
best approximates it, and calculate the error. Express the approximat-
ing interval by name (e.g., “minor third”).

(a) 5
3

(b) 11
10

(c) 19
16

(d) 9
7

(e) 5
5

2. Give the prime factorizations of these rational numbers as
p

α1
1

p
α2
2

···pαr
r

q
β1
1

q
β2
2

···qβs
s

with
{p1, . . . , pr} ∩ {q1, . . . , qs} = ∅ ,

writing the primes of the numerator and denominator in ascending
order, as in 23·5·72

3·112·133 .

(a) 150
65

(b) 1000
287

(c) 750
980

(d) 512
162

(e) 69
289

3. Suppose x ∈ Q+ has the factorization x =
p

α1
1

p
α2
2

···pαr
r

q
β1
1

q
β2
2

···qβs
s

as in the previous

exercise. What criterion about this factorization says x is an integer?

4. Give a direct proof that
√

2 is irrational. Interpret this as a statement
about a musical interval.

5. Let p be a fixed prime. Verify that set of rational numbers. x whose
prime factorization has the form x = pα1

1 pα2

2 · · · pαr
r with p1, . . . , pr ≤ p

forms a subgroup of (Q+, ·). (Intonation which utilizes only interval
ratios in this subgroup is called p-limit tuning.)
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6. Show by multiplication and division in Q+ that:

(a) A just major third plus a just minor third is a just fifth.

(b) A just fifth plus a septimal minor third is a just minor seventh.

(c) A greater just whole tone plus a lesser just whole tone is a just
major third.

(d) The comma of Didymus plus one octave is two just fifths minus a
lesser whole tone.

(e) A just major third minus a just fourth is a just semitone downward.

7. Show by comparing rational numbers that:

(a) Three just major thirds is not an octave.

(b) Four just minor thirds is not an octave.

(c) A just fifth plus two just semitones is not a just major sixth.

(d) Two just fourths is not a just minor seventh.

(e) The difference between a just major third and a just minor third
is not a just semitone.

In each case above, calculate the difference as a rational interval ratio,
with prime factorization, and calculate the difference in cents.

8. Prove that the (additive) measurement in octaves of a rational interval
cannot be a rational number unless the interval is a multi-octave. (Hint:
If interval ratio, x is measured by a

b
octaves, we have x = 2

a
b . Use unique

factorization in Q+.) Deduce that the measurement of such an interval
in semitones or cents is irrational.

9. Find just tunings of these chords. The ratio should be reduced, meaning
the integers involved have no common divisor other than 1.
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(a)
ğIG22

22

¯¯
¯2 ¯

(b)
ğIG44

44

¯¯
¯¯

10. Find reduced just tunings of these chords using higher primes.

(a)
ğIG222

222

¯
¯

2¯¯2 ¯
(b)
ğIG ¯¯

6̄2̄2 ¯

11. Suppose a vocal quartet sings a seventh chord on an ah vowel. The sev-
enth chord is justly tuned, with septimal seventh, voiced bottom to top
as fifth, seventh, root, third (within an octave), the root being middle
C. The third formant of the ah vowel is centered at 2640 Hz. Suppose
frequencies within a just major third of the center are amplified. Iden-
tify the harmonics from each of the four singers that are amplified. How
many amplified frequencies are reinforced, i.e., appear in the overtone
series of more than one of the singers?



Chapter 12

Tuning The Scale To Obtain
Rational Intervals

We will now present some other traditional ways to tune the diatonic and
chromatic scales in order to render certain intervals as just intervals. An
understanding of the advantages and disadvantages of such scales will help
to explain why the system of equal temperament eventually gained wide
acceptance.

p-Limit Tuning. Given a prime number p, the subset of Q+ consisting
of those rational numbers x whose prime factorization has the form x =
pα1

1 pα2

2 · · · pαr
r with p1, . . . , pr ≤ p forms a subgroup of (Q+, ·). (This will be

an exercise.) We say that a scale or system of tuning uses p-limit tuning if
all interval ratios between pitches lie in this subgroup.

The Pythagorean Scale. This scale, deriving its name from Pythagoras’
high regard for the just fifth (ratio 3 : 2), tunes the scale so that all intervals
between scale tones are rational intervals involving only the primes 2 and 3.
This means it has it has 3-limit tuning: all intervals between scale tones have
ratios that can be expressed as 2α · 3β. The Pythagorean scale arises from
tuning each of the intervals in the upward sequence of scale tones

4̂ → 1̂ → 5̂ → 2̂ → 6̂ → 3̂ → 7̂

to be 3 : 2. Note that the diatonic notes occupy seven consecutive positions
on the circle of fifths, starting at the 11 o’clock position and proceeding
clockwise to the 5 o’clock position.

139
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I
V

II

VI

III

VII
♭V

♭II

♭VI

♭III

♭VII

IV

The Circle of Fifths

The Pythagorean scale simply tunes each of these fifths between diatonic
notes to be just fifths.

We calculate the interval ratio from 1̂ to each scale tone within an octave
by dividing. For example, the iteration 1̂ → 5̂ → 2̂ of two just fifths gives the
interval 3

2
· 3

2
= 9

4
. Since 2 < 9

4
< 4, this interval lies between one and two

octaves. So to get the scale tone 2̂ which is within one octave we divide by
2 to get 9

4
· 1

2
= 9

8
. We recognize this interval as the Pythagorean whole tone

(greater whole tone), whence the name.
In similar fashion, we calculate the interval between adjacent scale tones

tone 1̂ and 3̂ to be (
3

2

)4

·
(

1

2

)2

=
34

26
=

81

64

This interval, measured in cents is 1200 log2
81
64

≈ 407.88, about 8 cents sharp
of the tempered major third, and about 22 cents sharp of the just major third.

The ratio of each of the scale tones to the scale tone 1̂ in the Pythagorean
scale is given by this table:

scale tone : 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂

ratio to 1̂ : 1
1

9
8

81
64

4
3

3
2

27
16

243
128

2
1

Pythagorean diatonic scale

In this scale each of the five whole step intervals 1̂ → 2̂, 2̂ → 3̂, 4̂ → 5̂, 5̂ → 6̂,
and 6̂ → 7̂ is two just fifths minus an octave, which is the Pythagorean
whole tone (greater whole tone), whence the name. Both of the half-step
intervals are given by the complicated ratio 256

243
= 28

35 , which Pythagoras called
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a hemitone. (The comparison of this interval with the tempered semitone
and half the Pythagorean whole tone will appear as an exercise.) Thus the
intervals between adjacent scale tones in the Pythagorean scale are given by:

1̂
9:8−→ 2̂

9:8−→ 3̂
256:243−→ 4̂

9:8−→ 5̂
9:8−→ 6̂

9:8−→ 7̂
256:243−→ 8̂

The Pythagorean scale can be extended to a chromatic scale by continuing
to tune just fifths around the circle of fifths, but, as we have seen, the comma
of Pythagoras prevents us from completing the circle using only just fifths.
The comma is accommodated by allowing a “small” fifth between some two
adjacent positions in the circle. This is often placed at one of the bottom
clock positions, either between 7̂ and ♭5̂ or between ♭5̂ and ♭2̂. Choosing the
latter, we get:

I
V

II

VI

III

VII
♭V

♭II

♭VI

♭III

♭VII

IV

small fifth

A significant weakness of this scale is it’s poor representation of the major
third as 81

64
, two Pythagorean whole tones. This ratio is even greater than the

tempered major third, and is sharp of the just major third by precisely the
comma of Didymus (exercise). We will call it the Pythagorean major third.
The sharpness of this interval is easily perceived, and the dissonance heard
in the in the major triads I, IV, and V when played in Pythagorean tuning
render this system unacceptable for music in which a high level of consonance
is desired.

The Just Intonation Scale. This scale employs 5-limit tuning in such a
way that the diatonic major triads I, IV, and V are justly tuned, meaning
that when these chords are voiced within an octave in root position, the
ratios of root, third, and fifth are 4 : 5 : 6. In the key of C, this means the
C, F, and G major triads will enjoy the consonance of just intonation.
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G
C̄

¯¯
F̄

¯¯
Ḡ

¯¯

This is enough to define a tuning for each diatonic scale note, since each
diatonic note is used in at least one of these three chords. The justness of
the tonic triad I dictates 1̂ → 3̂ gives 5

4
and 1̂ → 5̂ gives 3

2
. The justness of

V says that 5̂ → 7̂ gives 5
4
, hence 1̂ → 7̂ is 3

2
· 5

4
= 15

8
, and that 5̂ → 2̂ is 3

4

(being downward a just fourth), hence 1̂ → 2̂ is 3
2
· 3

4
= 9

8
, which is the greater

whole tone. To effect the justness of IV, we deduce in similar fashion that
the ratios of 4̂ and 6̂ to 1̂ must be 4

3
and 5

3
, respectively. Thus the ratios of

scale tones to 1̂ in the just intonation scale are given by:

scale tone : 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂

ratio to 1̂ : 1
1

9
8

5
4

4
3

3
2

5
3

15
8

2
1

Just intonation diatonic scale

Note the more consonant intervals with 1̂ given by scale notes 3̂, 6̂, and 7̂
over those of the Pythagorean scale.

In the just intonation scale the greater whole tone appears as the interval
1̂ → 2̂, 4̂ → 5̂, and 6̂ → 7̂, while 2̂ → 3̂ and 5̂ → 6̂ are the lesser whole tone.
Both 3̂ → 4̂ and 7̂ → 8̂ are the just semitone. The intervals between adjacent
scale tones in the just intonation scale are as follows:

1̂
9:8−→ 2̂

10:9−→ 3̂
16:15−→ 4̂

9:8−→ 5̂
10:9−→ 6̂

9:8−→ 7̂
16:15−→ 8̂

In addition to giving justly tuned major triads I, IV, and V, the just
intonation scale gives justly tuned minor triads IIIm and VIm, and justly
tuned minor sevenths IIIm7 and VIm7. (Recall that the minor triad in root
position, voiced within an octave, is justly tuned as 10 : 12 : 15 and the
minor seventh is justly tuned as 10 : 12 : 15 : 18.)

The just intonation scale is extended to a chromatic scale in such a way
as to render certain other triads in just intonation, as follows.

1. ♭6̂ and ♭3̂ are tuned so that ♭VI is justly tuned. This places ♭6̂ a just
major third below ♭8̂ and ♭3̂ a just minor third above 1̂.
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2. ♭7̂ is tuned a just minor third above 5̂. This makes ♭III a justly tuned
major triad.

3. ♭2̂ = ♯1̂ is tuned so that VI is justly tuned.

4. ♭5̂ = ♯4̂ is tuned to be a just fourth below 7̂. This makes VIIm a justly
tuned minor triad.

With this chromatic scale many, but not all, of the major triads, minor
triads, and minor sevenths are justly tuned. For example, Im7 and IVm7 are
just, but the major triads II and III are both bad, the former having a flat
fifth and the latter having a sharp third. This, unfortunately, precludes have
well-tuned chords any extensive circle-of-fifths root movement.

Since the just intonation scale utilizes 5-limit tuning, there are no septimal
intervals, hence no septimal seventh chords. Several of the seventh chords,
such as I7, have the tuning obtained by placing the seventh a just minor third
(ratio 6

5
) above the fifth. This gives a seventh tuned as 20 : 25 : 30 : 36, which

is decidedly less consonant than the septimal seventh chord 4 : 5 : 6 : 7. Even
worse, the most needed seventh in conventional harmony, V7, is even less
consonant, since the interval 2̂ → 4̂ is not even a just minor third. An easy
exercise in arithmetic shows this chord has the tuning 36 : 45 : 54 : 64.

The Classical Mean-Tone Scale. The acceptance of thirds into Western
music, which occurred in the 14th and 15th centuries, brought the need for
tuning which goes beyond the 3-limit. Certain compromises were introduced
which detuned fifths in order to improve the sound of thirds. Such scales
are called mean-tone scales. We will discuss the one which became most
common, called the classical mean-tone scale; henceforth this is what we will
mean when we use the term “mean-tone scale”.

Unlike the Pythagorean and just intonation scales, the mean-tone scale
allows some irrational intervals. All of its rational intervals lie in the subgroup
of Q+ consisting of those elements whose prime factorization involves only 2
and 5.

The idea of the mean-tone scale is to shrink the fifths around the clock
equally so that the major third spanning four clock positions (modulo octave)
is the just major third, having ratio 5 : 4. One way to calculate the ratio r of
such a fifth is to note that 4 iterations of this interval should equal 2 octaves
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plus a just major third, i.e.,

x4 = 4 · 5

4
= 5

therefore x =
4
√

5 = 5
1

4 ≈ 1.49535 .

(Note that the closeness of this ratio, ≈ 1.49535, to 1.5 = 3
2
.) This is an

irrational interval (exercise) whose measurement in cents is calculated by

1200 log2
4
√

5 = 1200 log2 5
1

4 =
1200

4
log2 5 = 300 log2 5 ≈ 696.58 .

Thus the mean-tone fifth lies about 3 cents flat of the tempered fifth and
about 5 cents flat of the just fifth – tolerably close.

However, as with the Pythagorean scale, there must be a comma in the
circle. The problem is that three just major thirds do not constitute an
octave, as seen by:

(
5

4

)3

=
125

64
<

128

64
= 2

Hence if we tune fifths around the clock so that every four consecutive
clock positions equals (modulo cotave) a just major third, then the twelfth
position does not coincide with the starting point, being flat by the interval
ratio 2/(125

64
) = 128

125
, which is about 41 cents. Therefore a “large fifth” is

placed somewhere on the lower left side of the clock, usually located so that
it does not occur between diatonic scale tones. For example, it could be
placed between the 8 and 9 o’clock positions, as depicted below.

I
V

II

VI

III

VII♯IV♯I

♯V

♭III

♭VII

IV

large fifth

The large fifth which appears in the mean-tone chromatic scale, lying about
two fifths of a semitone sharp of the just fifth or tempered fifth, was long ago
dubbed the wolf fifth, after the animal’s howl.
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With the wolf fifth placed away from the diatonic clock positions, each
diatonic whole tone equals two mean-tone fifths minus an octave, which has
ratio ( 4

√
5)2/2 =

√
5/2, calculated in cents by 1200 log2(

√
5/2) ≈ 193.157,

about 7 cents flat of the tempered step. We can calculate the interval between
I and each of the scale tones. For example, the interval between scale tones
I and VI is three mean-tone fifths minus an octave, has ratio 53/4/2. Here is
a table of such ratios.

scale tone : 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂

ratio to I : 1
1

√
5

2
5
4

2

5
1
4

5
1
4

1
5

3
4

2
5

5
4

4
2
1

mean-tone diatonic scale

Drawbacks of Unequal Temperament. Each of the three scales discussed
in this chapter has certain advantages. The Pythagorean scale gives a just
fifth almost always. The Just intonation scale gives many perfectly tuned
chords. The mean-tone scale, with the comma placed as above, gives tolerably
tuned major triads on each of the diatonic roots except VII, and even this
triad would be well-tuned if we rotated the comma one position clockwise.
(Why?)

One obvious drawback of each of these systems is that some intervals are
poorly tuned. This Pythagorean scale gives poor thirds, and one weak fifth.
The just intonation scale renders the major triads II and III with less-than-
desirable tuning. The meantone scale has one very bad fifth.

But a more serious problem with these scales is their asymmetry with
respect to the choice of key. A keyboard instrument cannot be conveniently
retuned between songs, or in the middle of a piece that changes key. If the
keyboard is tuned to the just intonation scale in the key of C, a song in D has
serious problems because the tonic triad is distractingly out of tune. This is
what fed the gradual adoption of equal temperament. In the equally tempered
scale, one has to accept sharp thirds and sevenths, but all chords of the same
type are tuned precisely the same, regardless of their root relative to the key.
While this imperfect tuning was a bitter pill to swallow, it allowed composers
and performers to use extensive harmonic variety and freely modulate from
one key to another. A great deal of 19th and 20th century music is deeply
entrenched in this this liberation.
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In the first half of the 18th century J. S. Bach produced a bold demonstra-
tion of equal temperament1 by producing his famous Well-Tempered Clavier,
a collection of 48 preludes and fugues, assembled in two parts, each part
containing 24 pieces representing each of the major and minor keys. Another
example of a composition which exploits this harmonic emancipation is Franz
Listz’s classic piano piece Liebestraum (19th century) which extensively tra-
verses the circle of fifths, modulates several times, and uses every root note
in the chromatic scale of its initial (and final) key, A♭.

Exercises

1. Give just tunings for each of these jazz chords by utilizing “exotic”
primes, i.e., primes which are ≥ 7.

(a)
ğIG444

444

¯¯
6 ¯6¯

(b)
ğIG2222

2222

¯¯
¯2 ¯6̄̄

(c)
ğIG ¯¯

¯¯22̄̄

2. The Pythagorean scale’s minor third is one greater whole tone plus one
hemitone, called a Pythagorean minor third. Express it as a ratio and
compare it, as ratios and in cents, to the tempered minor third and the
just minor third.

3. Show that the interval between the just major third and the Pythag-
orean major third is the comma of Didymus. Explain why the mean-
tone fifth is flat of the just by one-fourth of the comma of Didymus,
and use this to recalculate the mean-tone fifth in cents.

4. Suppose the following passage is tuned so that if a note is a fifth or
minor third, modulo octave, from a note in the previous chord, then
that interval is just. Show that the final G will be sharp of the initial
G by the comma of Didymus.

1Actually, music historians disagree as to whether Bach was actually touting equal
temperamant or some other system quite close to equal temperament.
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ğIG ˘
¯˘ ˘

˘
¯
¯˚ ˘ ˘

(This example was presented in 1585 by the Venetian scholar G. B.
Benedetti (1530-1590).)

5. Which major triads in the mean tone scale have relatively good fifths
but poor thirds? (Place the comma between the 8 and 9 o’clock po-
sitions.) How does mean tone temperament render the minor third,
compared with the just minor third?

6. Suppose these chords are in root position, voiced within an octave using
the just intonation scale. Give the the reduced ratio for each chord.
Which of these chords will be “pleasing” when this is played in the just
intonation scale? Define pleasing to mean it uses only integers ≤ 20
when expressed as a reduced ratio.

(a) VIm (b) III (c) IV+9 (d) ♭II7 (e) V6

7. Identify those fifths which in the just intonation chromatic scale’s cir-
cle of fifths which are not just fifths (3

2
), and express each of these

“imperfect” fifths as a reduced ratio of integers n1 : n2.

8. Assume we have tuned the Pythagorean chromatic scale with the comma
placed between VII and ♭V. Certain of the major triads with perfect
(i.e., just) fifths have better thirds by virtue of the fact that the third
lies across the comma from the root and fifth. Calculate the difference
of this third from the just major third in cents and identify by Roman
numeral which major triads possess this property.
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ad lib, 17
rubato, 17
Ain’t No Sunshine, 94
Edelweiss, 27
Five Foot Two, Eyes of Blue, 27
In the Mood, 93
Joy To The World, 24
Let It Be, 29
Let Me Call You Sweetheart, 29
Liebestraum, 146
Maple Leaf Rag, 27, 44
Moonlight Sonata, 44
My Bonnie Lies Over The Ocean, 29
O Christmas Tree, 26
O Tannenbaum, 26, 27
Raindrops Keep Falling On My Head, 26
Rhapsody in Blue, 94, 135
Strike Up The Band, 25
The Rose, 29
Well-Tempered Clavier, 146
When The Saints Go Marching In, 25
a cappella, 135

vocal ensemble, x
do, 13
fa, 13
la, 13
mi, 13
re, 13
sol, 13
ti, 13

abstract algebra, viii–ix, 73
accidental, 7, 37, 38

cautinary, 24
rules, 23–24

acoustics
musical instruments, x

additive measurement, 46–49, 56, 76, 137
Aeolian, 12, 43
alto, 19
amplitude, 113, 122, 123

loudness, 121
of harmonics, 114

Ancient Greeks, 11, 50
Eratosthenes of Cyrene, 90
Pythagoras, v, 131, 139

arpeggio, 41
array (row chart), 64
associativity, 73
audibility range (human), 4, 5, 111, 114, 119, 130
augmented

chord, 34–37, 39, 136
fifth, 39, 77
sixth chord, 39, 40
triad, 37

axiom, 70
axis, 49

frequency, 49
horizontal, 17
logarithmic, 59
vertical, 17

Babbitt, Milton, 64
Bach, J. S., v, 146
banjo, 52
bar, 22, 25

line, 39
barbershop, 135
base

exponential function, 54, 58
logarithm, 53, 54, 56–58
natural logarithm, 56

bass clef, 5, 42, 44, 65
beam, 18–19
beat, 17–22, 28, 94

meter, 22–23
Beethoven, Ludwig van, 44
Benedetti, G. B., 147
Berg, Alban, 64
bijective, 75
binary form, 27
blues, 135
bounded

function, 111
bounded function, 110
Brahms, Johannes, 27

cadence, 11
caesura, 135
calculus, vii, ix, 21, 111, 112, 124

Fundamental Theorem, 118
cancellation, 88
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cautionary accidental, 24
cent, 48–49, 51, 53, 57–61, 87, 98–101, 103, 114, 127–

129, 131, 134, 137, 140, 144–147
comma of Didymus, 129
comma of Pythagoras, 131
detuning, 62
ratio, 48

chipmunk effect, 120
Chopin, Frédérik, 27
chord, vi, vii, 31, 41–44, 52, 67, 103, 146

augmented, 34–37, 39, 136
augmented sixth, 39, 40
consonant, 36
diatonic, 142
diminished, 34, 36
diminished seventh, 35–37, 39, 136
dissonant, 65
enharmonic, 39
four-note, 34, 35
half-diminished seventh, 36, 134
identification, vii
incomplete, 44
jazz, 135, 146
just tuning, 133–138
labeling, 31, 36–37, 43, 44
major, 32–34, 38, 134
major seventh, 35–36, 134
major(, 134
minor, 33–34
minor seventh, 35–37, 52, 134, 143
ninth, 135
progression, 40–41
ratio, 147
seventh, 34–36, 39, 40, 43, 134, 135, 138, 143
spelling, 37–40, 42, 43
suffix, 36–37
tuning, 143, 145
type, 36, 43
voicing, 33, 147

chromatic, 10, 61, 102
n-, 59, 61, 77, 83, 84, 103, 132
interval, 25, 26, 57–58, 62, 77, 136

group of, 76–77
non-standard, 77, 80, 96

scale, vi, vii, 7, 10, 13, 51, 52, 61–63, 69, 98,
133, 139, 146

just intonation, 142–143
mean-tone, 144
non-standard, 61–63, 66, 67, 92
Pythagorean, 141

scale tone, 40
transposition, 26, 29
unit, 48, 103

circle, 75, 77
clock, 72
comma of Pythagoras, 141
fifths, 131, 139, 141, 146, 147

progression, 143
interval, 62, 63, 84
just fifths, 132
modular equivalence, 72

circle of fifths, 36, 40–41
clarinet, 115, 119

formant, 121
class, 83

equivalence, 14, 18, 31, 45, 71–73, 76
interval, 32
note, 7, 18, 24, 33, 35–38, 43, 77–80

row chart, 64–66
scale tone, 38

classical mean-tone scale, 143–145
clef, vii, 4, 5, 22, 49

bass, 42, 44, 65
treble, 42

clock, 139
m-hour, 73
circle of fifths, 40
diatonic position, 145
mean-tone, 143–144
modular, 80
positions, 73

column
row chart, 78, 81

combinatorics
twelve-tone music, 64

comma, viii, 147
mean-tone, 144–145
of Didymus, 129, 137, 141, 146
of Pythagoras, 131–132, 141, 147

commutativity, 74–75, 87
ring, 88, 95

compass and rule, 125
composition

group operation, 81–82
interval, 95
law of, 73–76, 87
of functions, 74
of intervals, 76–77, 84, 97, 100

consonance, 36, 37, 61, 97, 125, 135
just intonation, 133, 141
semitone, 129
twelve-tone music, 64

consonant, 143
continuity, viii, 53, 110, 111

definition, 106–107
convergence, 112, 119
cosine, 2, 107, 113, 116–119, 122–123

Fourier series, 112
shift and stretch, 108–109

cycle
in m on n pattern, 93–95

cyclic
group, 82–83
permutation, 10–11, 15, 36
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augmented chord, 34
diminished seventh chord, 35
non-trivial, 11, 33

decibel, 121
derivative, 111
detuning, 61–62, 80, 81, 97

fifths, 143
diatonic, 10, 26

clock position, 145
major triad, 141
note, 13, 26, 38, 139
note class, 43
root, 145
scale, vi, 10, 26, 139

Pythagorean, 140
scale note, 142
scale tone, 38

mean-tone, 144
spelling, 39
transposition, 26, 27, 29
whole tone, 145

Didymus
comma of, 129, 137, 141, 146

diminished
chord, 34, 36
triad, 37, 39, 52

diminished seventh
chord, 35–37, 39, 136

discontinuity, 106, 107, 110
dissonance, 35, 37, 65, 133

Pythagorean major third, 141
distributivity, 87
divide, 1
Division Algorithm, 2, 13, 31, 32, 82, 84, 89

generalized, 70–72
divisor

greatest common, 62
domain, 88–89

function, 2, 53, 54, 107, 115
integral, 96
principal ideal, 89

dominant, 40
Dorian, 12, 15, 42
dot, 17–23, 28–29, 112
double flat, 7, 9, 38
double sharp, 7, 38
duration, 24, 28

effected by dots, 19–21
note, 17
tied notes, 22
tuplet, 22

durational note, 18, 22, 23, 28

ear, x
ear drum, 109
ecclesiastical mode, 11

eighth note, 18, 23, 28, 93–95
element, 10

of a set, 1
enharmonic

chord, 39
equivalence, 7, 38, 39
spelling, 38

equal temperament, vi, viii, 6, 48, 97, 98, 101, 126,
134, 136, 139, 145, 146

n-scale, 62
exponent, vi
fifth, 131
irrational intervals, 132–133
non-standard, viii, 132
perfect octave, 98
perfect octave), 98
septimal interval, 130
seven-tone, 80

equivalence
class, 4, 7, 14, 18, 31, 45, 71–72, 76
enharmonic, 7, 38, 39
octave, vi, 7, 10, 18, 31–33, 40, 49, 52, 97
ratio, 45
relation, vi, vii, 4, 7, 14, 31, 45, 71, 72
scale, 8, 11
tetrachord, 8

Eratosthenes of Cyrene, 90
Eratosthenes, sieve of, 90–91, 95
Euler phi function, 62, 83, 92–93
exotic

interval, 130
minor sixth, 131
tritone, 130

exponent, 53, 82
equal temperament, vi
in a group, 81
properties, 53, 59
unique factorization, 126

exponential, vi
function, 52–54, 83
interval (musical), viii
notation in group, 81

extending by periodicity, 107

fifth, 6, 10, 15, 32, 42, 47, 70, 76, 84, 98–101, 114,
128, 138, 141, 143, 145–147

augmented, 39, 77
cents, 58
circle, 139, 141, 143, 146, 147
detuning, 143
flatted, 43
generating interval, 83
just, 127–129, 131, 132, 134, 137, 139–141, 144,

145, 147
keyboard, 124, 127, 131
large, 144
major chord, 32
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major seventh chord, 35
mean-tone, 144, 146
mean-tone scale, 143–145
minor chord, 33
minor seventh chord, 35
octave equivalence, 32
parallel, 31
perfect, 6
progression, 40
Pythagoras, 131
small, 141
spelling, 38
tempered, 131, 133, 144
voicing, 33
wolf, 144–145

flag, 17–19
flat, 7, 13

chord labeling, 36
double, 7, 9, 38
fifth, 43
key signature, 13
twelve-tone music, 64

flip, 3
flute, 105
folk music, 27
form, vi, vii, x, 25, 27, 29

binary, 27
ternary, 27

formant, vii, 119–121, 124
vowel, 138

Fourier
coefficient, 112, 122

square wave, 115–119
coefficients, 112, 123
series, 112, 113, 115, 123, 124

truncated, 119
theory, 111–113

Fourier, Joseph, 111
fourth, 6, 10, 25, 46, 70, 76, 77, 101

generating interval, 83
just, 128, 137, 142, 143
keyboard, 63, 128, 130
octave equivalence, 32
parallel, 31
perfect, 6
progression, 40

frequency, v, 4, 48, 51, 55–59, 110, 111, 119, 122,
138

axis, 49
formant, 119–121, 124
fundamental, 113
interval, 45
keyboard notes, 47–48
logarithm, 50, 55
periodic function, 110
ratio, 50, 55, 61, 125
set, 45

string, 126
tempo, 17
vibration, 50, 109

fret, 50–52, 126
full diminished chord, 35–36
function, vii, 1, 2, 14, 25, 45, 105, 108, 109

bounded, 110
composition, 74
continuous, 53, 110
Euler phi, 62
exponential, 53–54, 83
group homomorphism, 75–76
identity, 74
increasing, 53, 54
integral, 115
inverse, 54, 75
logarithmic, 54–55, 83
moniod, 74
periodic, vi, viii, 107, 109–110, 113, 122–123

Fourier theory, 111–113
piecewise definition, 105–107
position, 110
sawtooth wave, 123
square wave, 115–119, 123
vibration, 109
wrapping, 72, 75

fundamental, 114
Fundamental Theorem of Calculus, 118

generating interval, 62–63, 83–84, 96
generator, 62

cyclic group, 82–83
ideal, 89, 90
of Zm, 92–93, 96

geometric transformation, 3, 14, 25
Gershwin, George, 25, 94, 135
Gershwin, Ira, 25
Glarean, Heinrich, 11–12
golden ratio, vii
graph, vii, 2–4, 14, 25, 26, 58, 105–107, 111, 116

exponential function, 53
logarithmic function, 54, 56
periodic function, 114, 122
sine and cosine, 108
square wave, 115, 116
truncated series, 119

greater whole tone, 128–129, 137, 142, 146
greatest common divisor, 62, 89–90, 92–93
Greeks, Ancient, 11, 50

Eratosthenes of Cyrene, 90
Pythagoras, v, 131, 139

group, vi, 74–77, 83, 84, 87–89, 139
addititive notation, 82
commutative, 75
cyclic, 82–83
examples, 75
exponential notation, 81
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generator, 62, 92
interval, 95
interval ratios, 97, 136
modular, 75
modular chromatic interval, 76–77
modular intervals, 76
musical intervals, 76, 125
rotations, 77

half note, 18, 28
half-diminished seventh, 134

chord, 36
half-step, 6, 8, 13, 140
harmonic, viii, 22, 123, 124, 133–136, 138

amplitude, 119
formant, 119–121
keyboard approximation, 134
overtone, 113–115
series, 135
square wave, 115–119
timbre, viii
triangle wave, 124
variety, 145
weight, 119, 124

harmonic analysis, vii, 111
basic theorem, viii, 111–113
timbre, vi

harmonization, 41
harmony, vii, x, 12, 31, 35, 43, 44, 67, 81, 94

implied, 41
integers, 98
non-standard scale, 62
Western, 34

hat
scale number notation, 13

hemitone, 141, 146
hertz, 4, 47, 110, 111, 138
Hertz, Heinrich, 4
homomorphism

group, 75–76, 83, 84
horizontal

axis, 17
reflection, 26
structure, vii, 17

ideal, 89, 95
principal, 89

identity
element, 73–76, 81, 87, 89, 97
function, 74

implied harmony, 41
increasing function, 53, 54
inequality, 1
infinite summation, 20, 111, 113, 118

Fourier series, 112
instrument

formant, 119, 121

stringed, 50
integer, vi–viii, 1, 10, 13, 14, 20, 28, 48, 49, 70–71,

78, 82, 87, 89, 91, 95, 102, 107, 125, 126,
137, 147

Euler phi function, 62
even, 89
harmony, 98
meter, 22–23
modular, 31–32, 72, 77, 78, 88–89, 92
modular equivalence, 72–73
negative, 70
non-negative, 18
overtone, vi
positive, viii, 14, 21, 22, 59, 61, 62, 70, 71, 83,

87, 89–92, 96, 103, 122, 125, 133
as intervals, 97–103

prime, 95
prime factorization, 91–92, 95
ratio, 97–103, 113
ring, 88
small, 133
time signature, 22–23

integral, 112, 116
integration by parts, 124
interpreted as area, 115
sine, 117

integral domain, 88–89, 96
integral musical interval, 102, 127
intercept, 2
intersection, 1
interval

keyboard, 97
interval (musical), vi, vii, 6–7, 14, 15, 35, 45, 49, 51,

53, 55, 57, 59, 61, 66, 69, 70, 77, 83, 87,
97, 98, 103, 128, 129, 136, 145

n-chromatic, 62, 77, 83–84
5-limit, 130
audible range, 130
cent, 48
chord, 31, 67
chromatic, 25, 26, 57–58, 62, 77, 136

non-standard, 80, 96
circle, 63
class, 32
comma of Pythagoras, 131
composition, 76, 97
consonant, v, 97
detuning, 62
exotic, 130
exponential, viii
fifth, 10, 47, 124
fourth, 10, 25, 46
generating, 62–63, 83–84, 92, 96
group of, 76, 125
higher primes, 130–131
integral, 97, 102, 113, 127
inverse, 76
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irrational, viii, 125, 132–133
mean-tone scale, 143–145

just, viii, 125, 127, 129, 130, 133–136, 139, 146
keyboard, vii, 6, 63, 66, 102
logarithm, vi, viii, 55
measurement conversion, 47–48, 56–58
modular, 33–36, 76, 78–80, 133

group of, 76
modular arithmetic, 31–32
modular chromatic

group of, 76–77
non-negative, 32
octave, 45
octave equivalence, 7
opposite, 46, 76, 95
orientation, 46
positive integers, viii
prime, 95, 98
Pythagorean, 6
Pythagorean scale, 139–141
ratio, 45–47, 49–50, 52, 59–61, 66, 76, 95, 103,

136, 137, 140
mean-tone comma, 144

rational, viii, 95, 127, 133, 136, 137, 139
mean-tone scale, 143

row chart, 64
scale, 8
semitone measurement, 32
septimal, 130, 143
sequence, 11, 42
unison, 133

interval (numerical), 2, 95, 110, 115, 117
continuity, 107
equally divide, 125
half-open, 107
time, 17

intonation, x
p-limit, 136
just, 133–136, 141
just chromatic scale, 147
just scale, 141–143, 147

inverse
additive, 78
element, 74–75

uniqueness, 75
function, 75
generating interval, 84
interval, 76
multiplicative, 88

inversion, 78, 81
row chart, 64, 65, 67

Ionian, 12, 24, 37
irrational

interval, 125, 137
equal temperament, 132–133
mean-tone scale, 143

interval (musical), viii

number, 132, 136, 137
temperament, 136
tuning, 134

isomorphism, 83
group, 75–76, 125

iteration, 47, 48, 62, 96, 140, 143

jazz, x, 23, 35, 135
chord, 135, 146

Joplin, Scott, 27, 44
just

fifth, 127–129, 131, 132, 134, 137, 139–141,
144, 145, 147

fourth, 128, 137, 142, 143
interval, viii, 125, 127, 129, 130, 133, 139, 146
intonation, 136, 141

chromatic scale, 147
scale, 141–143, 145, 147

major sixth, 129, 137
major third, viii, 127–129, 134, 137, 138, 141–

144, 146, 147
minor seventh, 135, 137
minor third, 129, 131, 134, 137, 140, 142, 143,

146, 147
semitone, 129–131, 137, 142
seventh chord, 134
tuning, 133–138

key, 9, 12–13, 37–38, 42, 66, 146
major, 146
minor, 146
problems in unequal temperament, 145
tonic, 31
white, 80

key (keyboard), 11
detuning, 62

key signature, vii, 8–10, 12, 15, 42
mode, 12–13

keyboard, 5–6, 8, 12, 62, 80, 87
approximation, viii, 98–103, 127, 131, 134

of harmonics, 114
fifth, 127
fourth, 128, 130
instrument, 145
interval, vii, 63, 66, 97, 98, 102, 127
major sixth, 129
major third, 52, 127
minor sixth, 131
minor third, 62, 129, 131
note, 37, 47–48, 130
piano, 14
scale, 98
semitone, 129, 131
step, 128
synthesizer, x
tritone, 130
tuning, v, 134, 145
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keynote, 10, 12

labeling
alternate, 37
chord, 31, 36–37, 43

lesser whole tone, 128–129, 137, 142
letter

note class, 7, 97
note identification, 5, 14
section, 27
subscripted, 5–6, 97, 102, 103

limit, 21
Fourier series, 112

Listz, Franz, 146
Locrian, 12, 15
logarithm, vi, 53, 56, 58, 63, 83, 98, 99, 127–129,

131, 140, 144
base, 53, 56
interval, vi, viii, 49–50
natural, 56–57
pitch, 55
properties, 55, 59

logarithmic
axis, 56, 59
function, 54–55
scale, 55

loudness, 121
lower bound, 70
Lydian, 12, 15, 42

major
chord, 32–34, 38

just, 134
key, 146
mode, 12–13, 24, 37, 38, 41–43
scale, 13
third, 35, 37
triad, 34–37, 52, 134, 141, 145, 147

justly tuned, 142
Pythagorean, 141

major ninth, 15
major second, 6
major seventh, 6

chord, 35–36, 134
generating interval, 83

major sixth, 6, 42, 47, 66
just, 129, 137
keyboard, 129

major third, 14, 32, 42, 47, 51, 52, 62, 66, 84, 98
just, viii, 127–129, 134, 137, 138, 141–144, 146,

147
keyboard, 6
Pythagorean, 6, 141, 146
ratio, 47
tempered, 133, 140, 141

mean-tone
fifth, 146

minor third, 147
scale, 143–145, 147

measure, 22, 23, 27, 29, 41, 44, 94, 95
accidental, 24
beats, 22–23
transposition, 25

melodic translation, 25
melodic transposition, 27
melody, vi, 12, 15, 24, 27, 41, 43, 44, 81, 96, 135

m on n pattern, 94
figure, 25
non-standard scale, 62
note, 15, 41
pattern, 24
symmetry, x
transposition, 25–26

meter, vi, 22–23, 94
microtuning, 48
middle C, 4, 51
MIDI, x
minor, 15

chord, 33–35
key, 146
mode, 12–13, 37, 38, 42, 43
relative, 13
third, 33, 35, 37
triad, 34, 36, 37, 52, 134

justly tuned, 142
minor ninth, 6
minor second, 6
minor seventh, 6

chord, 35–37, 52, 134, 143
just, 135, 137, 142
septimal, 130, 135

minor sixth, 6, 7, 42, 47, 101
exotic, 131
keyboard, 131
octave equivalence, 32

minor third, 6, 15, 29, 33, 42, 43, 47, 51, 77, 84, 146
just, 129, 131, 134, 137, 140, 142, 143, 146, 147
keyboard, 62, 129, 131
mean-tone, 147
Pythagorean, 146
ratio, 47
septimal, 130, 137
tempered, 146

minuet, 27
misspelled chord, 38–40
modality, 11–12
mode, x, 11–13, 15, 43

Aeolian, 12, 43
chord labeling, 36
Dorian, 12, 42
ecclesiastical, 11
Ionian, 12, 37
Ionina, 24
Locrian, 12
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Lydian, 12, 42
major, 12–13, 24, 37, 41–43
minor, 12–13, 42, 43
Myxolydian, 12
Phrygian, 12

modular, 64, 77
clock, 77, 80
equivalence

integers, 72–73
real number, 71
real numbers, 72

group, 75
integer, 72, 77, 78, 88–89, 92, 133
interval, 33–36, 52, 76, 78, 80, 84

n-chromatic, 62
scale, 96

modular arithmetic, vi, viii, 62, 75
n-tone row chart, 80
generating intervals, 62
interval, 31–33
scale, vi
twelve-tone chart, 77–79

moniod, 95
commutative, 74
examples, 73–74
integral intervals, 97

monoid, 73–75, 87, 88, 125
multi-octave, viii, 96, 133, 137
multiplicative measurement, 46–47, 56, 76
multiplicativity

interval ratio, 46
music theory, ix
Myxolydian, 12

natural, 7, 24
natural logarithm, 56–57
natural numbers, 1
ninth, 6, 7, 76, 100

chord, 135
major, 15
minor, 6
octave equivalence, 32

note, vii, 5–6, 10, 14–15, 19, 32, 51, 55, 59, 102, 103
accidental, 7, 24
altered, 24
chord, 31, 37
chromatic, 10
class, 18, 33, 35–38, 43, 77–80

row chart, 64–66
detuning, 61–62
diatonic, 10, 26, 139, 142
dotted, 19–21, 112
duration, 17–18
durational, 17–18, 22, 23, 28
eighth, 18, 23, 28
half, 18, 28
head, 17

keyboard, 5–6, 37, 47–48, 130
melody, 15, 41
microtonal, 48
minor chord, 33
non-diatonic, 38
octave equivalence, 7
piano, 5
quarter, 18, 21–23, 28
root, 41, 67, 146
scale, 7–8
sequence, 11, 41, 135
sixteenth, 18–19, 21, 22, 28
slur, 22
spelled, 38
subscript notation, 5–6
thirty-second, 28
tonic, 15
triad, 33
tuplet, 21
value, vii
voicing, 33
white and black, 5, 6, 8, 11, 12
whole, 17–18, 21, 22, 28, 29

note class, 7, 24
notehead, 18–19

octave, 6–7, 15, 32, 42, 45, 47–49, 52, 56, 57, 59, 77,
87, 98–102, 127, 128, 131–133, 137, 138,
140–145, 147

equal subdivision, 61
equivalence, vi, 7, 10, 18, 31–33, 40, 49, 52, 64,

76, 84, 97, 144, 146
identification, vi, 69–70
keyboard, 99
multi, viii, 96, 133, 137
parallel, 31
ratio two, 97–98
twelve-tone music, 63

one-to-one, 1, 53, 54, 75–77, 82
onto, 1, 54, 75, 76
opposite interval, 46, 95
order

of group element, 82, 96
orientation

interval, 46
original row, 64–67, 78, 81, 84
overtone, vi, 113–115

audible, 114, 119
integer, vi
reinforced, 114–115
series, 114, 134, 135, 138
singing, 114

parabola, 2
parallel

interval (musical), 31
pattern of m on n, 93–95, 135
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perfect fifth, 6
perfect fourth, 6
period, 107, 110–113, 117, 121–123

sine and cosine, 107
vibration, 109

periodic function, vi, viii, 107, 109, 122–123
definition, 107
Fourier theory, 111–113
sawtooth wave, 123
sine and cosine, 107
square wave, 115–119
tone, 110

periodicity
extending by, 107, 115, 123

permutation
cyclic, 10–11, 15, 34–36

phase shift, 114, 122, 123
Phrygian, 12, 15
physics of sound, ix
PID, 89
pitch, vii, 4, 6, 18, 22, 24–25, 49–52, 97, 103, 105,

110, 111, 113, 114, 122–125
m on n pattern, 93–94
altered by accidentals, 7
continuum, 134
formant, 119–121
harmonic, 113
harmony, 31
interval, 45, 46
logarithm, 50, 55
note, 18
overtone, 114
periodic function, 110
ratio, 133
reinforced overtone, 114–115
set, 45
slur, 22
spelling, 37
tone, 110
vertical axis, 17
vibration, 109

polyrhythm, vii, 21, 95
popular music, 27
prime

factorization, 91, 95, 97, 99, 102, 126–127, 133,
136–137, 139, 143

higher, 138
interval, 95

eleven, 101
five, 98
seven, 99
thirteen, 101
three, 98
two, 97

number, 21, 90–92, 95, 96, 103, 129, 139, 146
five, 130
higher, 130–131

infinititude, 96
infinitude, 130
seven, 130
three, 130
two, 130

ratio, 97
relatively, 62, 92–93
row, 64
three, 139
two, 139

principal ideal, 89
principal ideal domain, 89
progression, vi, 40–41

fifth, 40
fourth, 40–41
time, 17

pure tone, 111
Pythagoras, v, 131, 139, 140

comma of, 131–132, 141, 147
Pythagorean, 6

chromatic scale, 147
major third, 146
minor third, 146
scale, 139–141, 143–146
tuning, 131, 140, 141
whole tone, 128, 140, 141

quarter note, 18, 21–23, 28, 94

radical, 51
ragtime, x, 27
range, 2, 53, 54
ratio, vii, 53, 127, 137

n-chromatic unit, 63
cent, 48
chord, 147
equivalence, 45
fifth, 147
frequency, 55, 61, 125
integer, 97–103

harmonics, 113
interval, 45–47, 49–52, 56, 57, 59–61, 66, 76,

95, 97, 103, 128–130, 132–137, 139, 140
audible range, 130

just intonation scale tones, 142–143
just major chord, 141
mean-tone comma, 144
mean-tone scale, 143–145
prime, 97
Pythagorean minor third, 146
Pythagorean whole tone, 141
semitone, 126

rational
interval, viii, 95, 125–127, 131, 133, 136, 137,

139
mean-tone scale, 143
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rational number, vi–viii, 1, 53, 95, 96, 132, 136, 137,
139, 143

interval, 125–126
ring, 88

rationality
tuning, vi

real number, vi, vii, 1, 4, 20, 28, 55, 70, 87, 107, 125
base of exponential function, 54
dividend, 70
Fourier coefficient, 111, 112
interval ratio, 45, 46
modular equivalence, 71–72
musical intervals, 76
positive, 46, 50, 51, 53
ring, 88
semitone, 47

real numbers
group, 83

reflection
horizontal, 26

reflexivity, 4, 7
reinforced overtone, 114–115
relation, 14, 31

equivalence, 14, 31, 71, 72
relative minor, 13
relatively prime, 62, 92–93
remainder, 1
repeating patterns, 24–25
rest, 19
retrograde, 65
retrogression, 26
rhythm, vi, x, 23–25, 27, 29

figure, 93, 95
pattern, 25, 93, 94
swing, 23

rhythmic translation, 25, 27
ring, vi, 87–89, 95, 96

trivial, 88
Roman numeral, 36, 43, 44, 147
root, 37, 52, 114, 134, 138, 141, 145, 147

augmented chord, 34
chord labeling, 36
circle of fifths, 41
diatonic, 145
diminished seventh chord, 35
doubled, 134
half-diminished chord, 36
major chord, 32
major seventh chord, 35
minor chord, 33
minor seventh chord, 35
movement, 143
nondiscernable, 34, 35, 37, 39, 43, 136
note, 41, 67, 146
note class, 37, 43, 44
numeral, 37
position, 141, 142, 147

progression, 41
scale tone, 42–44
seventh chord, 34
spelling, 38
voicing, 33

row, 77–81
chart, 64–67, 77–81, 84

n-tone, 80
original, 64–67, 78, 80, 81, 84
prime, 64

sawtooth wave, 123
scale, vii, x, 7–8, 15, 62, 145

n-chromatic, 52, 60–63, 66, 67, 84, 92, 96, 103,
132

p-limit, 139
chromatic, vi, vii, 10, 40, 48, 51, 52, 61–63, 69,

98, 133, 139, 146
just intonation, 142–143, 147
mean-tone, 144
non-standard, 61, 62
Pythagorean, 147

diatonic, vi, 10, 26, 139
mean-tone, 144

equally tempered, viii, 97, 99, 101, 145
equivalence, 8, 11
just intonation, 141–143, 145, 147
major, 13
mean-tone, 143–145, 147
mode, 11–12
modular arithmetic, vi
non-Western, vii
numbers, 13
Pythagorean, 139–141, 143–146

chromatic, 141
standard, vi, 7–12, 33
tone, 13, 15, 29, 36–38, 40, 42–44, 139, 140,

142
unequal temperament, 133

scherzo, 27
Schoenberg, Arnold, 63
section, 27
semitone, 6–7, 10, 32, 35, 42, 47–50, 53, 57, 59, 63,

70, 77, 84, 98, 99, 101, 102, 137, 144
cent, 48
comma of Pythagoras, 132
exotic, 131
fifth, 58
generating interval, 83
just, 129–131, 137, 142
keyboard, 129, 131
modular arithmetic, 32–33
ratio, 47, 126
tempered, 141

septimal
interval, 130, 143
minor seventh, 130, 135, 138
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minor third, 130, 137
seventh chord, 143
whole tone, 130

septuplet, 28
sequence, 21

chromatic scale, 10
cyclic permutation, 10–11, 33, 34
finite, 10–11
Fourier coefficient, 111
interval, 11, 42, 78
key, 9–10
melodic, 25
modular interval, 33–36
note, 7–8, 11, 24, 41, 103, 135
note class, 64, 78
pitch, 7–8, 25, 113
retrograde, 65
row chart, 65–67, 81, 84
semitone, 42

serial music, vii, 64
series

Fourier, 112, 119, 123
harmonic, 135
overtone, 114, 134, 135, 138
truncated, 119

set, vii, 1, 4, 10, 14, 53, 74, 76, 93
group, 75
interval, 76
monoid, 73, 74
non-empty, 74
one-to-one correspondence, 53
pitch, 45
ring, 87

seven-tone, 80–81
seventh, 6, 138

chord, 34–36, 39, 40, 43, 134, 135, 138
just, 134
septimal, 143

equal temperament, 145
half-diminished, 134
major, 6, 83, 134
major seventh chord, 35
minor, 6, 134, 137, 142, 143

just, 135
septimal, 130, 135

minor seventh chord, 35
septimal, 138
spelling, 38

sharp, 7, 13
chord labeling, 36
double, 7, 38
key signature, 13
twelve-tone music, 64

shift, 3, 14, 25, 123
periodicity, 107, 110
sine and cosine, 108–109, 113

sieve of Eratosthenes, 90–91, 95

signal analysis, 120
signal processing, 115
sine, 2, 107, 113–114, 117–119, 122–123

Fourier series, 112
pure tone, 111
shift and stretch, 108–109

sixteenth note, 18, 19, 21, 22, 28, 95
tuplet, 21

sixth, 6
major, 6, 42, 47, 66, 137

just, 129
keyboard, 129

minor, 6, 42, 47, 101, 131
exotic, 131

slope, 2
slur, 22
solmization, 13
soprano, 19
sound pressure, 121
sound wave, 4
spelling, 37–40, 42, 43

fifth, 38
note, 15
root, 38
seventh, 38
third, 38
twelve-tone music, 64, 66

square wave, 115–119, 123, 124
staff, vii, 5, 17, 19, 43, 49, 59, 97
stem, 18–19

flag, 17
step, 6–8, 42, 43, 57, 62, 66, 70, 84, 100, 140

keyboard, 128
octave equivalence, 32
quarter, 101
whole, 62

straight line, 2
stretch, 3, 14, 117, 120

logarithmic function, 56
periodicity, 107, 110–111
sine and cosine, 108–109, 113

string, 52
fret, 126
vibration, 50, 125–126

string quartet, x
structure

horizontal, 17
subgroup, 139

p-limit, 136
subsequence, 10
subset, 1, 10, 72
suffix

chord, 36–37, 41–43, 67
summation

formula for sine and cosine, 108
infinite, 111, 113, 118

swing rhythm, 23
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swing time, 93
symmetry

cyclic, 33–35
equivalence relation, 4, 7
form, 27
internal, 27
melodic, x, 26

symphony, 24
symphony orchestra, x
synthesizer, 80, 115

detuning, 61
tunable, x

temperament
n-scale, 62
equal, vi, 126, 130, 131, 134, 136, 139, 145, 146
irrational, 132–133, 136
mean-tone, 147
unequal, 133, 145–146

tempo, 17, 23
tension, 50
tenth, 134

voicing, 134
ternary form, 27
tetrachord, 8
third, 76, 100, 114, 138, 141, 143, 147

minor, 142, 143
equal temperament, 145
just major, viii
labeling, 37
major, 14, 32, 35, 37, 42, 47, 51, 52, 62, 66, 84,

98, 133, 134, 137, 138, 140–144, 146, 147
just, 127–129

major chord, 32
minor, 15, 29, 35, 37, 42, 43, 47, 51, 62, 77, 84,

131, 134, 137, 140, 146, 147
just, 129
keyboard, 129
septimal, 130

minor chord, 33
minor seventh chord, 35
Pythagorean, 145
seventh chord, 34
spelling, 38
voicing, 33

thirty-second note, 28
tie, 17, 22–24, 29, 95
timbre, vi, x, 105, 110, 113, 114

formant, 121
harmonic, viii
harmonic analysis, vi

time
horizontal axis, 17

time signature, vii, 18, 21
Tin Pan Alley, 27
tonal center, 12, 66
tone, v, 4, 33, 113, 114, 120, 122, 123, 133

periodic function, 110–111
pure, 111
scale, 13, 15, 36–38, 40, 42, 43, 139, 140, 142
timbre, 105, 114
trigonometry, vi
vibration, 109

tonic, 12, 31
mode, 12–13
note, 15
triad, 43, 142

transcendental number, 46
e, 56

transformation, 27
geometric, vi, 3, 14, 25
retrogression, 26

transformation of graphs, 3, 109
flip, 3
shift, 3
sine, 113
stretch, 3, 56

transitivity, 4, 7
translation, 25

horizontal, 25
melodic, 25
rhythmic, 25, 27

transposition, 25–26
chromatic, 26, 29
diatonic, 26, 27, 29
melodic, 27
row chart, 64–65

treble clef, 4, 5, 42
triad, 33–34

augmented, 34, 37
diminished, 34, 37, 39, 52
just, 142
just intonation scale, 141
major, 34–37, 52, 134, 143, 145, 147

justly tuned, 142
Pythagorean, 141

minor, 34, 36, 37, 52, 134, 143
justly tuned, 142, 143

tonic, 43, 142
triangle wave, 124
trigonometry, vi, 2, 108

tone, vi
triplet, 21, 23, 28, 135
tritone, 6, 15, 42, 66, 76, 101

exotic, 130
keyboard, 131

trombone, 105
trumpet, 109

formant, 121
tuning, vi, vii, 4, 51, 111, 132, 143, 145

p-limit, 130, 136, 139
3-limit, 139, 143
5-limit, 141, 143
alternative, viii
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chord, 145
detuning, 61–62
fork, 111
jazz chords, 146
just, 133–138, 141
just intonation scale, 142
keyboard, 47–48, 134
micro, 48
Pythagorean, 131, 140, 141
rationality, vi
seventh chord, 34

tuplet, 17, 21–22, 28
twelve-tone

chromatic scale, vii
music, viii, x, 63–67
row chart, 77–79

union, 1
unique factorization, vi, viii, 91–92, 102, 133

rational numbers, 126–127, 137
unison interval, 46, 70, 76, 84
unit, 88

in Zm, 92
upper bound, 70, 71

vertical axis, 17
vibration, 4, 22, 109–110

string, 50, 125–126
tone, 110

violin, 22, 24, 50, 105, 109, 134
vocal cords, 109
voice leading, 40
voicing, vii, 33, 37, 138

ratio, 133
tenth, 134

volume, 113
vowel, vii, 105, 138

formant, 119–121, 138

waveform, 115, 119, 123, 124
Webern, Anton, 64
Well-Ordering Principle, 2, 70–71, 82, 89, 91
Western harmony, 34
Western music, 31, 34, 61, 143
whole note, 17–18, 21, 22, 28, 29, 43
whole tone, 6

diatonic, 145
greater, viii, 128–129, 137, 140, 142, 146
lesser, 128–129, 137, 142
Pythagorean, 128, 140, 141
septimal, 130

wolf fifth, 144–145
wrapping function, 72, 75


